Foundations of Language Science and Technology Speech synthesis

Marc Schröder, DFKI schroed@dfki.de

28 January 2009

What is text-to-speech synthesis?

"You have one message from Dr. Johnson."

Applications of TTS

- Texts readers
 - for the blind
 - in eyes-free environments (e.g., while driving)
- Telephone-based voice portals
- Multi-modal interactive systems
 - talking heads
 - "embodied conversational agents" (ECAs)

Telephone-based voice portals

Example: Synthesising a phone number

monotonous

0-6-8-1-3-0-2-5-3-0-3

unnatural (SMS-to-speech example)

0. 6. 8. 1. 3. 0. 2. 5. 3. 0. 3.

optimal (Baumann & Trouvain, 2001)

0681 - 302 - 53 - 03

A Talking Head

MPI Saarbrücken

An instrumented Poker game: "Al Poker"

- user is playing against two virtual characters
 - user shuffles and deals (RFID)
- game events trigger emotions in characters
- emotion is expressed in synthetic voices

Structure of a TTS system

Structure of a TTS system: MARY

System structure: Input markup parser

- System-internal XML representation MaryXML
- => speech synthesis markup parsing is simple XML transformation
- Use XSLT => easily adaptable to new markup language

Speech Synthesis Markup: SSML

Author (human or machine) provides additional information to the speech synthesis engine:

Er hat sich in München <emphasis> verlaufen </emphasis>

Im Jahr <say-as interpret-as="date" format="y">1999</say-as>
wurden <say-as interpret-as="cardinal">1999</say-as> Aufträge
zur Bestellnummer <say-as interpret-as="digits">1999</say-as>
erteilt.

oody pitch="low" rate="slow">
Immer mit der Ruhe!
consody>

System structure: Shallow NLP

Preprocessing / Text normalisation

| | Net patterns | (email, web addresses) |) schroed |
|--|--------------|------------------------|-----------|
|--|--------------|------------------------|-----------|

| Date patterns | 23.07.2001 |
|---------------------------------|------------|
|---------------------------------|------------|

| Time patterns | 12:24 h, | 12:24 Uhr |
|---------------------------------|----------|-----------|
|---------------------------------|----------|-----------|

- Number patterns (cardinal, ordinal, roman)
- **Abbreviations**
- Special characters

d@dfki.de

12,95€

123,09 km

0681/302-5303

3 3. Ш

engl.

&

System structure: Phonemisation

- lexicon lookup
- letter-to-sound conversion
 - morphological decomposition
 - letter-to-sound rules
 - syllabification
 - word stress assignment

System structure: Prosody

- "Prosody"
 - intonation (accented syllables; high or low phrase boundaries)
 - rhythmic effects (pauses, syllable durations)
 - loudness, voice quality
- assign prosody by rule, based on
 - punctuation
 - part-of-speech
- modelled using "Tones and Break Indices" (ToBI)
 - tonal targets: accents, boundary tones
 - phrase breaks

Prosody and meaning

Example: contrast and accentuation

No, I said it's a blue MOON (not a blue horse)

No, I said it's a BLUE moon (not a yellow moon)

- Prosody can express contrast
- getting it wrong will make communication more difficult

System structure: Calculation of acoustic parameters

timing:

- segment duration predicted
 - by rules
 - or by decision trees
- intonation:
 - fundamental frequency curve predicted
 - by rules
 - or by decision trees

System structure: Waveform synthesis

Creating sound: Waveform synthesis technologies (1)

- Formant synthesis
 - acoustic model of speech
 - generate acoustic structure by rule
 - robotic sound

Creating sound: Waveform synthesis technologies (2)

Concatenative synthesis

- diphone synthesis
 - glue pre-recorded "diphones" together
 - adapt prosody through signal processing
- unit selection synthesis
 - glue units from a large corpus of speech together
 - prosody comes from the corpus, (nearly) no signal processing

Creating sound: Waveform synthesis technologies (3)

- Statistical-parametric speech synthesis
 - with Hidden Markov Models
 - models trained on speech corpora
 - no data needed at runtime => small footprint

Examples of various speech synthesis systems

unit selection systems:

L&H RealSpeak

AT&T Natural Voices

Loquendo ACTOR

MARY

diphone systems:

Elan TTS

MBROLA-based (MARY

formant synthesis systems:

SpeechWorks

Infovox

HMM-based systems:

MARY

(others exist: HTS, USTC, Festival, ...)

Concatenative synthesis: Isolated phones don't work

acoustic unit database (units = **phone segments** recorded in isolation)

Concatenative synthesis: Diphones

sound segments from the middle of one phone to the middle of the next phone acoustic unit database units = **diphone segments** recorded in carrier words (flat intonation)

Concatenative synthesis: Diphones (2)

Concatenative synthesis Unit selection

Al Poker: The voices of Sam and Max

Sam:

- Unit Selection Synthesis
- Voice specifically recorded for AI Poker
- Natural sound within poker domain

Max:

- HMM-based synthesis
- Sound quality is limited but constant with any text

Sam's voice: Unit selection syntheis

=> very good quality within the poker domain!

Sam's voice: Unit selection syntheis

"Ich kann auch ganz andere Sachen..."

reduced quality with arbitrary text

Max's voice: HMM-based synthesis

"Ich habe zwei Paare."

Max's voice: HMM-based synthesis

"Ich kann auch ganz andere Sachen..."

constant quality with arbitrary text

