

Natural Language Parsing

Foundations of Language Science and Technology (WS 2008/2009)

Yi Zhang

Language Technology Lab, DFKI GmbH
Cluster of Excellence - Multimodal Computing and Interaction
Department of Computational Linguistics, Saarland University

Language & Grammar
● Language

– Structural

– Productive

– Ambiguous, yet efficient in human-human
communication

● Grammar
– Generalization of regularities in language structures

– Morphology & syntax, often complemented by
phonetics, phonology, semantics, and pragmatics.

Grammar Frameworks
● Formalism

– Mathematical rigor

– Facilitates the development of linguistic theory
● Formal linguistic theory

– Formalized description of language phenomena
using the formalism

● A grammar framework does NOT correspond to
parsing/generation algorithms. But a well-designed
framework should bear processing steps in mind

Ambiguity
● Human languages are ambiguous on almost

every layer
● Grammar frameworks are designed to

represent necessary ambiguities, and eliminate
unnecessary ones

● Parsing models are responsible of efficiently
apply grammar descriptions and retrieve
analyses

Syntactic Parser as NLP Component

Morphological
Analysis

PoS Tagging

Chunking

NE Recognition

Syntactic Parsing

Semantic Analysis

Dialog Processing

Trees (or not)
S

NP
VP

V NP Det N

A N

NP

Sue gave Paul an old penny

Sue gave Paul an old penny
SBJ GOAL

OBJ MOD

DET

Sue gave Paul an old penny

NP ((S\NP)/NP)/NP NP NP/N N/N N
>

(S\NP)/NP
>

N

>
NP

>

S\NP

S <

Chomsky Hierarchy

● Type 0 (unrestricted rewriting system)

● Type 1 (context sensitive grammars)

● Type 2 (context free grammars)

● Type 3 (regular grammars)

 A , A∈V N ,≠

A ,≠

A xB∨A x , x≠

Context-Free Grammar

●

– : Terminals
– : Non-Terminals
– : Productions

●

– : Start symbol

〈V T ,V N ,℘ , S 〉
V T

V N

℘

S

A , A∈V N ,∈V N∪V T ∗

S∈V N

Context-Free Phrase Structure Grammar

● S -> NP VP
● NP -> Det N
● NP -> Adj NP
● VP -> V
● VP -> V NP
● VP -> Adv VP

● N -> dog | cat
● Det -> the | a
● V -> chases | sleeps
● Adj -> gray | lazy
● Adv -> fiercely

CFG Derivation

● If and
then follows ,

● A sequence of strings
where for all i ,
then is a derivation from to

● ``derivable'' relation: transitive, reflexive

1,2,⋯,m
1≤i≤m−1

= A , == A , = A∈℘

 ⇒

i⇒i1

1,2,⋯,m 1 m

Earley's Algorithm

● Input:
● Chart: a set of items

– : positions in the input
– : dotted rule

● : rhs prefix that has already been
applied to input from to

● : rhs suffix yet to be found

0w1 1w2 2⋯n−1wn n

〈h , i , A .〉

0hinh , i

A .A . A∈℘

h i

Earley's Algorithm
● Initialize

foreach

● Scan(i)

if

● Complete(i)

foreach
 foreach

● Predict(i)

foreach
 foreach

● Parse

Initialize
for
 Predict(i-1)
 Scan(i)
 Complete(i)
if
 return success
else
 return failed

S∈℘

ℂ⇐〈0,0,S .〉

w i=a ∧ 〈h , i−1, A . a〉∈ℂ

ℂ⇐〈0,0,S .〉

ℂ⇐〈h ,i , Sa .〉

〈h , i , A .〉∈ℂ
〈k ,h ,B . A〉∈ℂ

ℂ⇐〈k , i , B A .〉

〈h , i , A . B 〉∈ℂ
B

ℂ⇐〈 i , i , B .〉

i=〈1⋯n〉

∃〈0,n , S .〉∈ℂ

An Example
.1 S -> NP VP

.2 VP -> V NP

.3 VP-> V

.4 NP -> Det N

 The dog chases a cat
 Det N V Det N

0 1 2 3 4 5

0 S->.NP VP
NP->.Det N

1 NP->Det .N

2 NP->Det N.
S->NP .VP

VP->.V
VP->.V NP

3 S->NP VP. VP->V.
VP->V .NP

NP->.Det N

4 NP->Det .N

5 S->NP VP. VP->V NP. NP->Det N.

Probabilistic Context-Free Grammar

● Each rule is augmented by a probability

● The probability of a derivation is the product of
 rule probabilities of each derivation step

∀ A∈V N ∑
∀ , A∈℘

P A=1

P t = ∏
A∈t

P A

More Probabilities

● String probability
Sum of the probabilities of all left-most derivations producing x from X

● Sentence probability
Sum of the probabilities of all left-most derivations producing x from start
symbol S

● Prefix probability
Sum of the probabilities of all sentences having x as prefix

● Structured language model

P X⇒∗ x

P S⇒∗ x

P S⇒L
∗ x

Parsing with PCFG

● Earley's algorithm can be adapted to carry
probabilities

– Predict

– Scan

– Complete

● Inside probability:
● Best-first parsing with Viterbi Algorithm

〈h , i , A . B 〉[x , y]⇒〈 i , i , B .〉[x∗P B , P B]

〈h , i−1, A . a〉[x , y]⇒ 〈h ,i , A a .〉[x , y]

〈h , i , A .〉[x1, y1]∧〈k , hB . A〉[x2, y2]

⇒〈k ,h ,B A .〉[y1∗x2 , y1∗y2]

A p ,q

Statistical Constituent Parsers

● Collins' parser [Collins 1997]
● Charniak's parser [Charniak 2000]
● Reranking model [Collins et al. 2005]
● Self-training [McClosky 2006]

Statistical Dependency Parsing

● Graph-based approach
[Eisner 1996] [McDonald et al. 2005]

– Edge-factorized scoring model

– Efficient algorithms to find maximal spanning tree

– Allows non-projective dependency structures

● Transition-based approach
[Covington 2001] [Nivre et al. 2007]

– (Near) deterministic parsing

– Projective/pseudo-projective

Parsing with Richer Formalisms

● TAG
[Schabes et al. 1990] [Xia 2001]

● CCG
[Hockenmaier et al. 2007] [Clark et al. 2007]

● LFG
[Riezler et al. 2002] [Cahill et al. 2004]

● HPSG
[van Noord 2006] [Miyao et al. 2008] [Callmeier 2001]

Evaluation -- PARSEVAL

Domain Adaptability and Multilinguality

● Statistical parsing models usually performs
well in in-domain tests and suffer accuracy
drop when tested out-domain (typically 6~8%
performance drop when train on WSJ and test
on Brown)

● Typological differences between languages
require different parsing models (morphology,
word order, projectivity, etc.)

Open Questions

● How much linguistics is required for parsing?
● How do we evaluate a parser?
● How to make trade-offs between adequacy,

accuracy and efficiency?
●

