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Language & Grammar
● Language 

– Structural

– Productive

– Ambiguous, yet efficient in human-human 
communication

● Grammar
– Generalization of regularities in language structures

– Morphology & syntax, often complemented by 
phonetics, phonology, semantics, and pragmatics.



  

Grammar Frameworks
● Formalism

– Mathematical rigor

– Facilitates the development of linguistic theory
● Formal linguistic theory

– Formalized description of language phenomena 
using the formalism

● A grammar framework does NOT correspond to 
parsing/generation algorithms. But a well-designed 
framework should bear processing steps in mind



  

Ambiguity
● Human languages are ambiguous on almost 

every layer
● Grammar frameworks are designed to 

represent necessary ambiguities, and eliminate 
unnecessary ones

● Parsing models are responsible of efficiently 
apply grammar descriptions and retrieve 
analyses



  

Syntactic Parser as NLP Component

Morphological
Analysis

PoS Tagging

Chunking

NE Recognition

Syntactic Parsing

Semantic Analysis

Dialog Processing



  

Trees (or not)
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Chomsky Hierarchy

● Type 0 (unrestricted rewriting system)

● Type 1 (context sensitive grammars)

● Type 2 (context free grammars)

● Type 3 (regular grammars)



 A , A∈V N ,≠

A ,≠

A xB∨A x , x≠



  

Context-Free Grammar

●

–    : Terminals
–    : Non-Terminals
–    : Productions 

●

–    : Start symbol 

〈V T ,V N ,℘ , S 〉
V T

V N

℘

S

A , A∈V N ,∈V N∪V T ∗

S∈V N



  

Context-Free Phrase Structure Grammar

● S -> NP VP
● NP -> Det N
● NP -> Adj NP
● VP -> V
● VP -> V NP
● VP -> Adv VP 

● N -> dog | cat
● Det -> the | a
● V -> chases | sleeps
● Adj -> gray | lazy
● Adv -> fiercely



  

CFG Derivation

● If                             and 
then      follows        , 

● A sequence of strings 
where for all i                , 
then                    is a derivation from     to

● ``derivable'' relation: transitive, reflexive
 

1,2,⋯,m
1≤i≤m−1

= A , == A , = A∈℘

  ⇒

i⇒i1

1,2,⋯,m 1 m



  

Earley's Algorithm

● Input:
● Chart: a set of items 

–     : positions in the input
–           : dotted rule

●    : rhs prefix that has already been 
applied to input from     to   

●    : rhs suffix yet to be found

0w1 1w2 2⋯n−1wn n

〈h , i , A .〉

0hinh , i

A .A . A∈℘


h i





  

Earley's Algorithm
● Initialize

foreach

 

● Scan(i)

if

   

● Complete(i)

foreach
     foreach 

● Predict(i)

foreach
     foreach

 

● Parse

Initialize
for 
     Predict(i-1)
     Scan(i)
     Complete(i)
if
     return success
else
     return failed

S∈℘

ℂ⇐〈0,0,S .〉

w i=a ∧ 〈h , i−1, A . a〉∈ℂ

ℂ⇐〈0,0,S .〉

ℂ⇐〈h ,i , Sa .〉

〈h , i , A .〉∈ℂ
〈k ,h ,B . A〉∈ℂ

ℂ⇐〈k , i , B A .〉

〈h , i , A . B 〉∈ℂ
B

ℂ⇐〈 i , i , B .〉

i=〈1⋯n〉

∃〈0,n , S .〉∈ℂ



  

An Example
.1 S -> NP VP

.2 VP -> V NP

.3 VP-> V

.4 NP -> Det N

                           The           dog        chases        a            cat
                            Det            N             V            Det            N

0 1 2 3 4 5

0 S->.NP VP
NP->.Det N

1 NP->Det .N

2 NP->Det N.
S->NP .VP

VP->.V
VP->.V NP

3 S->NP VP. VP->V.
VP->V .NP

NP->.Det N

4 NP->Det .N

5 S->NP VP. VP->V NP. NP->Det N.



  

Probabilistic Context-Free Grammar

● Each rule is augmented by a probability

● The probability of a derivation is the product of 
 rule probabilities of each derivation step

∀ A∈V N ∑
∀ , A∈℘

P A=1

P t = ∏
A∈t

P A



  

More Probabilities

● String probability
Sum of the probabilities of all left-most derivations producing x from X

● Sentence probability
Sum of the probabilities of all left-most derivations producing x from start 
symbol S

● Prefix probability
Sum of the probabilities of all sentences having x as prefix

● Structured language model

P X⇒∗ x

P S⇒∗ x

P S⇒L
∗ x



  

Parsing with PCFG

● Earley's algorithm can be adapted to carry 
probabilities

– Predict 

– Scan

– Complete

● Inside probability: 
● Best-first parsing with Viterbi Algorithm

〈h , i , A . B 〉[ x , y ]⇒〈 i , i , B .〉[x∗P B , P B]

〈h , i−1, A . a〉[ x , y ]⇒ 〈h ,i , A a .〉[ x , y ]

〈h , i , A .〉[ x1, y1]∧〈k , hB . A〉[ x2, y2]

⇒〈k ,h ,B A .〉[ y1∗x2 , y1∗y2 ]

A  p ,q



  

Statistical Constituent Parsers

● Collins' parser [Collins 1997]
● Charniak's parser [Charniak 2000]
● Reranking model [Collins et al. 2005]
● Self-training [McClosky 2006]



  

Statistical Dependency Parsing

● Graph-based approach 
[Eisner 1996] [McDonald et al. 2005]

– Edge-factorized scoring model

– Efficient algorithms to find maximal spanning tree

– Allows non-projective dependency structures

● Transition-based approach 
[Covington 2001] [Nivre et al. 2007]

– (Near) deterministic parsing

– Projective/pseudo-projective



  

Parsing with Richer Formalisms

● TAG 
[Schabes et al. 1990] [Xia 2001]

● CCG
[Hockenmaier et al. 2007] [Clark et al. 2007]

● LFG
[Riezler et al. 2002] [Cahill et al. 2004]

● HPSG
[van Noord 2006] [Miyao et al. 2008] [Callmeier 2001]



  

Evaluation -- PARSEVAL



  

Domain Adaptability and Multilinguality

● Statistical parsing models usually performs 
well in in-domain tests and suffer accuracy 
drop when tested out-domain (typically 6~8% 
performance drop when train on WSJ and test 
on Brown)

● Typological differences between languages 
require different parsing models (morphology, 
word order, projectivity, etc.)



  

Open Questions

● How much linguistics is required for parsing?
● How do we evaluate a parser?
● How to make trade-offs between adequacy, 

accuracy and efficiency?
● ... ...


