Foundations of Language Science and Technology

Finite State Methods for Lexicon and Morphology

Bernd Kiefer
Bernd.Kiefer@dfki.de

Deutsches Forschungszentrum für künstliche Intelligenz

Morphological Parsing

- Break a surface form into morphemes:
- foxes into fox (noun stem) and -e -s (plural suffix + e-insertion)
- Compute stem and features
$>$ goose \rightarrow goose $+\mathrm{N}+\mathrm{SG}$ or +V
> geese \rightarrow goose $+\mathrm{N}+\mathrm{PL}$
> gooses \rightarrow goose +V +3SG
- Needed for (among others)
- spell-checking: is steadyly or steadily correct?
- identify a word's part-of-speech
- reduce a word to its stem

Morphological Knowledge

Components needed in a morphological parser:

1. Lexicon: list of stems and class information (base, inflectional class etc.)
2. Morphotactics: a model of morphological processes like English adjective inflection on the last slide

- lexical and morphotactic knowlegde will be encoded using finite-state automata

3. Orthography: a model of how the spelling changes when morphemes combine, e.g.,

- city+s \rightarrow cities
- in \rightarrow il in context of I, like in- +legal
- will be modeled using finite-state transducers

Detour: Describing Languages

- Language: a set of finite sequences of symbols
- Symbols can be anything like graphemes, phonemes, etc.
- Alphabet: the inventory of symbols
- We want formal devices to describe the strings in a language

Formal Languages - Definitions

- Alphabet Σ (Sigma): a nonempty finite set of symbols
- Strings of a language: arbitrary finite sequences of symbols in Σ
> ϵ (epsilon) denotes the empty string
> Σ^{*} is the set of all strings over Σ, including ϵ
- A language L is a subset of $\Sigma^{*}, \mathrm{~L} \subseteq \Sigma^{*}$
- grammatical sentences $w \in L$
- ungrammatical sentences $\mathrm{v} \notin \mathrm{L}$

Formal Grammars - Definitions

- Mathematical devices to describe languages
- Goal: separate the grammatical from the ungrammatical strings
- One of the devices: rule systems
- Two alphabets: terminals Σ, nonterminals N
> Rules rewrite strings in $(\Sigma \cup N)^{*}$ into new strings in $(\Sigma \cup N)^{*}$
- Languages differ in complexity
- Complexity depends on the type of rule system / device needed

Chomsky Hierarchy

- Type 3: regular languages
- Rules of type $\mathbf{A} \rightarrow \alpha, \mathbf{A} \rightarrow \alpha \mathbf{B} ; \mathbf{A}, \mathbf{B} \in \mathbf{N} ; \alpha \in \Sigma^{*}$
- Type 2: context free languages - $\mathrm{A} \rightarrow \psi ; \psi \in(\Sigma \cup \mathrm{N})^{*}$
- Type 1: context sensitive languages - $\alpha \mathrm{A} \beta \rightarrow \alpha \psi \beta ; \alpha, \beta \in \Sigma^{*}$
- Type 0: unrestricted $>\alpha \mathbf{A} \beta \rightarrow \psi$
- The following inclusions hold:
- Type $3 \subset$ Type $2 \subset$ Type $1 \subset$ Type 0

Regular Languages

- Simplest formal languages, rules $\mathrm{A} \rightarrow \mathrm{x}, \mathrm{A} \rightarrow \mathrm{x} B$
- Alternative characterization: use symbols from the alphabet and combine them using
- concatenation -
> alternative|
- Kleene star * (repeat zero or more times)
- Examples:
\{the\}•\{gifted\}•\{student\}
\{the\}•(\{very\}|\{extremely\})•\{gifted\}•\{student\}
(\{0\}|\{1\}|\{2\}|\{3\}|\{4\}|\{5\}|\{6\}|\{7\}|\{8\}|\{9\})*•(\{0\}|\{2\}|\{4\}|\{6\}|\{8\})

Properties of Regular Languages

- Rule systems are right linear
- Nonterminal always at the right end of the rule's right hand side: $\mathrm{A} \rightarrow \mathrm{x}, \mathrm{A} \rightarrow \mathrm{x}$ B
- A linear (in size of the string) number of steps is enough to answer: $w \in L$?

Properties of Regular Languages

- Rule systems are right linear
- Nonterminal always at the right end of the rule's right hand side: $\mathrm{A} \rightarrow \mathrm{x}, \mathrm{A} \rightarrow \mathrm{x}$ B
- A linear (in size of the string) number of steps is enough to answer: w $\in \mathrm{L}$?
- Can describe arbitrary long strings, e.g., sheep talk: ba(a)*h

Properties of Regular Languages

- Rule systems are right linear
- Nonterminal always at the right end of the rule's right hand side: $\mathrm{A} \rightarrow \mathrm{x}, \mathrm{A} \rightarrow \mathrm{x}$ B
- A linear (in size of the string) number of steps is enough to answer: $\mathrm{w} \in \mathrm{L}$?
- Can describe arbitrary long strings, e.g., sheep talk: ba(a)*h
- Can describe infinite languages

Properties of Regular Languages

- Rule systems are right linear
- Nonterminal always at the right end of the rule's right hand side: $\mathrm{A} \rightarrow \mathrm{x}, \mathrm{A} \rightarrow \mathrm{x}$ B
- A linear (in size of the string) number of steps is enough to answer: $\mathrm{w} \in \mathrm{L}$?
- Can describe arbitrary long strings, e.g., sheep talk: ba(a)*h
- Can describe infinite languages
- What is the simplest thing not possible (Hotz's question) $a^{n} b^{n}, n \in \mathbf{N}$ only finite counting!

Properties of Regular Languages

- Rule systems are right linear
- Nonterminal always at the right end of the rule's right hand side: $\mathrm{A} \rightarrow \mathrm{x}, \mathrm{A} \rightarrow \mathrm{x}$ B
- A linear (in size of the string) number of steps is enough to answer: $\mathrm{w} \in \mathrm{L}$?
- Can describe arbitrary long strings, e.g., sheep talk: ba(a)*h
- Can describe infinite languages
- What is the simplest thing not possible (Hotz's question) $a^{n} b^{n}, n \in \mathbf{N}$ only finite counting!
- Equivalent to finite automata
- A finite set of states Q, containing a start state q_{0} and a subset of final states F
- An input tape containing the input string and a pointer to mark the current input position
- A transition relation $\delta: \mathbf{Q} \times(\Sigma \cup\{\epsilon\}) \times \mathbf{Q}$
- Possible moves depend on:
> the current state
> the current input symbol
- every move advances the input pointer
- graphical representation: directed graph, states are nodes, edges are state transitions

Nondeterministic Finite Automata

- Automata where δ is a relation and ϵ arcs are allowed are called nondeterministic automata
- The move may not be uniquely determined based on the next input symbol
- ex: the (extremely gifted $\mid \epsilon$) gifted* ${ }^{*}$ student

Nondeterministic Finite Automata

- Automata where δ is a relation and ϵ arcs are allowed are called nondeterministic automata
- The move may not be uniquely determined based on the next input symbol
- ex: the (extremely gifted $\mid \epsilon$) gifted* student

Nondeterministic Finite Automata

- Automata where δ is a relation and ϵ arcs are allowed are called nondeterministic automata
- The move may not be uniquely determined based on the next input symbol
- ex: the (extremely gifted $\mid \epsilon$) gifted* student

Nondeterministic Finite Automata

- Automata where δ is a relation and ϵ arcs are allowed are called nondeterministic automata
- The move may not be uniquely determined based on the next input symbol
- ex: the (extremely gifted $\mid \epsilon$) gifted* ${ }^{*}$ student

Nondeterministic Finite Automata

- Automata where δ is a relation and ϵ arcs are allowed are called nondeterministic automata
- The move may not be uniquely determined based on the next input symbol
- ex: the (extremely gifted $\mid \epsilon$) gifted* ${ }^{*}$ student

Nondeterministic Finite Automata

- Automata where δ is a relation and ϵ arcs are allowed are called nondeterministic automata
- The move may not be uniquely determined based on the next input symbol
- ex: the (extremely gifted $\mid \epsilon$) gifted* ${ }^{*}$ student

Nondeterministic Finite Automata

- Automata where δ is a relation and ϵ arcs are allowed are called nondeterministic automata
- The move may not be uniquely determined based on the next input symbol
- ex: the (extremely gifted $\mid \epsilon$) gifted* ${ }^{*}$ student

Closure Properties

- Language type A is closed unter operation x means: applying x to members of A results in element of the same type
- Regular languages are closed under
- Concatenation, Union (trivial)
- Complementation: Exchange final and nonfinal states of an automaton
\Rightarrow Intersection: $\mathrm{L}_{1} \cap \mathrm{~L}_{2}=\neg\left(\neg \mathrm{L}_{1} \cup \neg \mathrm{~L}_{2}\right)$
- Applicability of these operations facilitates modularization
- E.g., concatenate automaton for base word forms with one for inflectional suffixes

Finite Automata: Search

- German adjective ending
- Input: klein + er + es

Finite Automata: Search

- German adjective ending
- Input: klein + er + es

Finite Automata: Search

- German adjective ending
- Input: klein + er + es

Failure!

Finite Automata: Search

- German adjective ending
- Input: klein + er + es

Backtracking

Finite Automata: Search

- German adjective ending
- Input: klein + er + es

Failure!

Finite Automata: Search

- German adjective ending
- Input: klein + er + es

Finite Automata: Search

- German adjective ending
- Input: klein + er + es

Failure!

Finite Automata: Search

- German adjective ending
- Input: klein + er + es

Finite Automata: Search

- German adjective ending
- Input: klein + er + es

Failure!

Finite Automata: Search

- German adjective ending
- Input: klein + er + es

Finite Automata: Search

- German adjective ending
- Input: klein + er + es

Failure!

Finite Automata: Search

- German adjective ending
- Input: klein + er + es

Finite Automata: Search

- German adjective ending
- Input: klein + er + es

Backtracking

Success!

Nondeterministic vs. Deterministic

- Search becomes a problem in big automata
- Solution: determinisation
- the transition relation has to be a total function $\mathrm{Q} \times \Sigma \rightarrow \mathrm{Q}$: exactly one choice
- for every nondeterministic automaton, a deterministic automaton can be constructed that accepts the same language
- recognition linear in size of the string
> but: the size of the automaton can be exponential in size of original automaton

Advantages of Finite Automata

- efficiency
> very fast if deterministic or low-degree non-determinism
- space: compressed representations of data
- system development and maintenance
> modular design and automatic compilation of system components
> high level specifications
- language modelling
> uniform framework for modelling dictionaries and rules

FSA for Morphology

- Let's first have a look at concatenative morphology
> cats: cat + s
> unbelieveable: un + believe + able
- Use different automata for
- prefixes
> base form \Rightarrow lexicon (we'll do this first)
- suffixes
and combine them with concatenation
- recognition is not enough: analysis should return information, e.g., inflectional class
- idea: associate final states with information

Lexicon representation

Why not simply list all words?

Lexicon representation

Why not simply list all words?

```
stiff pos - large, wasteful, incomplete
stiffer comp
stiffest sup
stiffly adv
still pos & adv
stiller comp
stillest adv
stout pos & adv
stouter comp
stoutest sup
stony pos
stonier com
```


Lexicon representation

Why not simply list all words?

```
stiff pos
stiffer comp
stiffest sup stiffly adv
still pos \& adv
stiller comp
stillest adv
stout pos \& adv
stouter comp
stoutest sup
stony pos
stonier com
```


Lexicon representation

Why not simply list all words?

stiff	pos	- large, wasteful, incomplete
stiffer	comp	- no (morphological) handling of
stiffest	sup	new words
stiffly	adv	
still	pos \& adv	- what about languages with a
stiller	comp	more productive morphology,
stillest	adv	e.g., Finnish or Turkish?
stout	pos \& adv	
stouter	comp	
stoutest	sup	
stony	pos	
stonier	com	

Lexicon representation

Why not simply list all words?

stiff	pos	- large, wasteful, incomplete
stiffer	comp	- no (morphological) handling of
stiffest	sup	new words
stiffly	adv	
still	pos \& adv	- what about languages with a
stiller	comp	more productive morphology,
stillest	adv	e.g., Finnish or Turkish?
stout	pos \& adv	Encode each phenomenon /
stouter	comp	年
stoutest	sup	process in one automaton
stony	pos	$>$ Combine them and get an effi-
stonier	com	cient machine

Lexicon representation

stiff	pos
stiffer	comp
stiffest	sup
stiffly	adv
still	pos \& adv
stiller	comp
stillest	adv
stout	pos \& adv
stouter	comp
stoutest	sup
stony	pos
stonier	com

Separate base form and modifications e.g., (inflectional) affixes:
stiff
still stout
stony stolen straight :
Other morphological processes like unnegation:
un + happy
un + clear + ly

Lexicon Automaton

..., sandy, still, stolen, stony, stout, ...

1. construct a letter tree (or trie); leaves \equiv final nodes

Lexicon Automaton

..., sandy, still, stolen, stony, stout, ...

1. construct a letter tree (or trie); leaves \equiv final nodes
2. associate the leaves with lexical information

Lexicon Automaton

..., sandy, still, stolen, stony, stout, ...

1. construct a letter tree (or trie); leaves \equiv final nodes
2. associate the leaves with lexical information
3. merge the nodes with identical information

- minimize the automaton

Suffixes: German Adjectives

Only one final state: How to get the different values?

Suffixes: German Adjectives

final states with different information can not be combined: expand automaton

Combining the Levels

- What about: un... with big; . . .ly with still?

Combining the Levels

- What about: un... with big; . . .ly with still?
- Split startnodes in adj-lex, like the final nodes
- But: splits the lexicon, less compact
- Alternative: special flags that are handled by the machinery

Two-Level Morphology

- Represents a word as correspondence between two levels
- Lexical level: abstract morphemes and features
- Surface level: the actual spelling of the word
- Can be implemented using finite state transducers
- A finite state transducer rewrites the input onto a second, additional tape

$$
3
$$

Surface

Automaton vs. Transducer

- Finite-state Automaton
- Arcs are labeled with symbols like a and b
- Accepts strings like aaab
- Defines a regular language: $\{\mathrm{a}, \mathrm{ab}, \mathrm{aab}, \mathrm{aaab}, \ldots$ \}
- Finite-state Transducer
- Arcs are labeled with symbol pairs like $a: b$ and $b: b$, but also $\mathrm{b}: \epsilon$ and $\epsilon: \mathrm{a}$ (and b as shorthand for $\mathrm{b}: \mathrm{b}$)
- Accepts a pair of strings like aaab:aabb
> Defines a regular relation: $\{$ a:b, aa:bb, aaa:bbb, ...\}
- We will use it to accept string pairs like cat+N+PL:cats and fox $+\mathrm{N}+\mathrm{PL}$:foxes

Four Views on Transducers

Lexical | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Surface \square

1. Recognizer: machine that accepts or rejects pairs of strings
2. Generator: machine that outputs pairs of strings
3. Translator: machine that reads one string and outputs another string (in both directions)
4. Set Relator: machine that computes relations between sets

Cascaded Transducers

- To accomodate for all spelling / pronounciation changes, one transducer alone is not powerful enough
- Use intermediate tapes that contain the output of one transducer and serves as input to another transducer
- To handle irregular spelling changes, we can add intermediate tapes with intermediate symbols: ^ for morpheme boundary, \# for word boundary Lexical

		\mathbf{f}	\mathbf{o}	\mathbf{x}	$\mathbf{+ N}$	$+\mathbf{P L}$			

Surface

 \square

$$
{ }_{f}
$$

-
- English orthographic rules that apply at particular morpheme boundaries

Name	Description of rule	Example
consonant doubling	consonant doubled before -ing/-ed	beg / begging
e-deletion	silent e dropped before $-i n g /-e d$	make / making
e-insertion	e added between -s, -z, -x, $-c h,-s h ~ a n d ~-s ~$	watch / watches
y-replacement	$-y$ changes to -ie before -s, to -i before -ed	try / tries
k-insertion	verbs ending with vowel $+-c$ add $-k$	panic / panicked

Orthograpic Rules II

- Spelling rules take the concatenation of morphemes the intermediate tape - as input and produce the surface form
- Example: e-insertion rule is applied to the intermediate form fox^s\#

- rule: $\left((z|s| x)^{\wedge}: \epsilon \epsilon: \mathrm{e} \mid \neg(\mathrm{z}|\mathbf{s}| \mathrm{x})^{\wedge}: \epsilon\right) \mathrm{s} \#$
- \star : all pairs not in this transducer, remember y is $y: y$
- States q_{0} and q_{1} accept default pairs like cat^s\#:cats\#
- State q_{5} rejects incorrect pairs like fox^s\# : foxs\#

y-Replacement

- Ex.: spy+s \rightarrow spies
- rule: . $\left(\left(y: i^{\wedge}: e\right) \mid\left(\neg y^{\wedge}: \epsilon\right)\right)$ \#
- All these machines do not change input to which they do not apply
- Nevertheless, the rule writer must take care of all interactions
- The task of morphological analysis/generation
- (Very short) introduction to formal languages
- Basics of regular languages
- Nondeterministic and deterministic finite automata
- Applying finite state techniques to morphological knowledge
- Lexicon: compacted tries
- Concatenative phenomena: finite automata
- Associating information with final states
- Derivational phenomena: finite state transducers

Beesley, Kenneth R. and Lauri Karttunen (2003). Finite-State Morphology. CSLI Publications. www. fsmbook.com
Jurafsky, Daniel and James H. Martin (2000). Speech and Language
Processing. An Introduction to Natural Language Processing, Computational Linguistics and Speech Recognition. New Jersey: Prentice Hall.
Koskenniemi, Kimmo (1983). Two-level morphology: a general computational model for word-form recognition and production. Publication No:11, University of Helsinki, Department of General Linguistics, 1983.
Mohri, Mehryar (1996). On some Applications of finite-state automata theory to natural language processing. In: Journal of Natural Language Egineering, 2, pp 1-20.
Xerox Finite State Compiler (Web Demo):
http://www.xrce.xerox.com/competencies/content-analysis/ fsCompiler/fsinput.html

