
Foundations of Language Science and Technology

Finite State Methods for Lexicon and Morphology

Bernd Kiefer

Bernd.Kiefer@dfki.de

Deutsches Forschungszentrum für künstliche Intelligenz

Finite State Methods for Morphology – p.1/41

Morphological Parsing

Break a surface form into morphemes:
foxes into fox (noun stem) and -e -s (plural suffix +
e-insertion)

Compute stem and features
goose → goose +N +SGor +V

geese → goose +N +PL

gooses → goose +V +3SG

Needed for (among others)
spell-checking: is steadyly or steadily correct?
identify a word’s part-of-speech
reduce a word to its stem

Finite State Methods for Morphology – p.2/41

Morphological Knowledge

Components needed in a morphological parser:

1. Lexicon: list of stems and class information (base,
inflectional class etc.)

2. Morphotactics: a model of morphological processes
like English adjective inflection on the last slide

lexical and morphotactic knowlegde will be encoded
using finite-state automata

3. Orthography: a model of how the spelling changes
when morphemes combine, e.g.,

city+s → cities
in → il in context of l, like in- +legal
will be modeled using finite-state transducers

Finite State Methods for Morphology – p.3/41

Detour: Describing Languages

Language: a set of finite sequences of symbols

Symbols can be anything like graphemes, phonemes,
etc.

Alphabet: the inventory of symbols

We want formal devices to describe the strings in a
language

Finite State Methods for Morphology – p.4/41

Formal Languages - Definitions

Alphabet Σ (Sigma): a nonempty finite set of symbols

Strings of a language: arbitrary finite sequences of
symbols in Σ

ǫ (epsilon) denotes the empty string
Σ* is the set of all strings over Σ, including ǫ

A language L is a subset of Σ*, L ⊆ Σ*
grammatical sentences w ∈ L
ungrammatical sentences v 6∈ L Σ*

L

Finite State Methods for Morphology – p.5/41

Formal Grammars - Definitions

Mathematical devices to describe languages

Goal: separate the grammatical from the
ungrammatical strings

One of the devices: rule systems
Two alphabets: terminals Σ, nonterminals N
Rules rewrite strings in (Σ∪ N)* into new strings in
(Σ∪ N)*

Languages differ in complexity

Complexity depends on the type of rule system / device
needed

Finite State Methods for Morphology – p.6/41

Chomsky Hierarchy

Type 3: regular languages
Rules of type A → α, A → α B; A,B ∈ N; α ∈ Σ*

Type 2: context free languages
A → ψ; ψ ∈ (Σ ∪ N)*

Type 1: context sensitive languages
α A β → αψβ; α, β ∈ Σ*

Type 0: unrestricted
α A β → ψ

The following inclusions hold:
Type 3 ⊂ Type 2 ⊂ Type 1 ⊂ Type 0

Finite State Methods for Morphology – p.7/41

Regular Languages

Simplest formal languages, rules A → x, A → x B

Alternative characterization:
use symbols from the alphabet and combine them using

concatenation •

alternative |
Kleene star * (repeat zero or more times)

Examples:

{the}•{gifted}•{student}

{the}•({very}|{extremely})•{gifted}•{student}

({0}|{1}|{2}|{3}|{4}|{5}|{6}|{7}|{8}|{9})*•({0}|{2}|{4}|{6}|{8})

Finite State Methods for Morphology – p.8/41

Properties of Regular Languages

Rule systems are right linear

Nonterminal always at the right end of the rule’s right
hand side: A → x , A → x B

A linear (in size of the string) number of steps is enough
to answer: w ∈ L ?

Finite State Methods for Morphology – p.9/41

Properties of Regular Languages

Rule systems are right linear

Nonterminal always at the right end of the rule’s right
hand side: A → x , A → x B

A linear (in size of the string) number of steps is enough
to answer: w ∈ L ?

Can describe arbitrary long strings, e.g., sheep talk:
ba(a)*h

Finite State Methods for Morphology – p.9/41

Properties of Regular Languages

Rule systems are right linear

Nonterminal always at the right end of the rule’s right
hand side: A → x , A → x B

A linear (in size of the string) number of steps is enough
to answer: w ∈ L ?

Can describe arbitrary long strings, e.g., sheep talk:
ba(a)*h

Can describe infinite languages

Finite State Methods for Morphology – p.9/41

Properties of Regular Languages

Rule systems are right linear

Nonterminal always at the right end of the rule’s right
hand side: A → x , A → x B

A linear (in size of the string) number of steps is enough
to answer: w ∈ L ?

Can describe arbitrary long strings, e.g., sheep talk:
ba(a)*h

Can describe infinite languages

What is the simplest thing not possible (Hotz’s question)
anbn, n ∈ N only finite counting!

Finite State Methods for Morphology – p.9/41

Properties of Regular Languages

Rule systems are right linear

Nonterminal always at the right end of the rule’s right
hand side: A → x , A → x B

A linear (in size of the string) number of steps is enough
to answer: w ∈ L ?

Can describe arbitrary long strings, e.g., sheep talk:
ba(a)*h

Can describe infinite languages

What is the simplest thing not possible (Hotz’s question)
anbn, n ∈ N only finite counting!

Equivalent to finite automata

Finite State Methods for Morphology – p.9/41

Finite Automata

A finite set of states Q, containing a start state q
0

and a
subset of final states F

An input tape containing the input string and a pointer
to mark the current input position

A transition relation δ : Q × (Σ ∪ {ǫ}) × Q

Possible moves depend on:
the current state
the current input symbol

every move advances the input pointer

graphical representation: directed graph, states are
nodes, edges are state transitions

Finite State Methods for Morphology – p.10/41

Nondeterministic Finite Automata

Automata where δ is a relation and ǫ arcs are allowed
are called nondeterministic automata

The move may not be uniquely determined based on
the next input symbol

ex: the (extremely gifted|ǫ) gifted* student

Finite State Methods for Morphology – p.11/41

Nondeterministic Finite Automata

Automata where δ is a relation and ǫ arcs are allowed
are called nondeterministic automata

The move may not be uniquely determined based on
the next input symbol

ex: the (extremely gifted|ǫ) gifted* student

q0 q1
the

Finite State Methods for Morphology – p.11/41

Nondeterministic Finite Automata

Automata where δ is a relation and ǫ arcs are allowed
are called nondeterministic automata

The move may not be uniquely determined based on
the next input symbol

ex: the (extremely gifted|ǫ) gifted* student

q0 q1
the

q2
extremely

Finite State Methods for Morphology – p.11/41

Nondeterministic Finite Automata

Automata where δ is a relation and ǫ arcs are allowed
are called nondeterministic automata

The move may not be uniquely determined based on
the next input symbol

ex: the (extremely gifted|ǫ) gifted* student

q0 q1
the

q2
extremely

q3

gifted

Finite State Methods for Morphology – p.11/41

Nondeterministic Finite Automata

Automata where δ is a relation and ǫ arcs are allowed
are called nondeterministic automata

The move may not be uniquely determined based on
the next input symbol

ex: the (extremely gifted|ǫ) gifted* student

q0 q1
the

q2
extremely

q3

gifted

ǫ

Finite State Methods for Morphology – p.11/41

Nondeterministic Finite Automata

Automata where δ is a relation and ǫ arcs are allowed
are called nondeterministic automata

The move may not be uniquely determined based on
the next input symbol

ex: the (extremely gifted|ǫ) gifted* student

q0 q1
the

q2
extremely

q3

gifted

ǫ

gifted

Finite State Methods for Morphology – p.11/41

Nondeterministic Finite Automata

Automata where δ is a relation and ǫ arcs are allowed
are called nondeterministic automata

The move may not be uniquely determined based on
the next input symbol

ex: the (extremely gifted|ǫ) gifted* student

q0 q1
the

q2
extremely

q3

gifted

ǫ

gifted

q4

student

Finite State Methods for Morphology – p.11/41

Closure Properties

Language type A is closed unter operation x means:
applying x to members of A results in element of the
same type

Regular languages are closed under
Concatenation, Union (trivial)
Complementation: Exchange final and nonfinal
states of an automaton
Intersection: L1 ∩ L2 = ¬(¬L1 ∪ ¬L2)

Applicability of these operations facilitates
modularization

E.g., concatenate automaton for base word forms with
one for inflectional suffixes

Finite State Methods for Morphology – p.12/41

Finite Automata: Search

q0 q1 q2 q3st e n
er m

ǫ r

ǫ

s

ǫ

German adjective ending

Input: klein + er + es

Finite State Methods for Morphology – p.13/41

Finite Automata: Search

q0 q1 q2 q3st e n
er m

ǫ r

ǫ

s

ǫ

German adjective ending

Input: klein + er + es

Finite State Methods for Morphology – p.14/41

Finite Automata: Search

q0 q1 q2 q3st e n
er m

ǫ r

ǫ

s

ǫ

Failure!
German adjective ending

Input: klein + er + es

Finite State Methods for Morphology – p.15/41

Finite Automata: Search

q0 q1 q2 q3st e n
er m

ǫ r

ǫ

s

ǫ

Backtracking
German adjective ending

Input: klein + er + es

Finite State Methods for Morphology – p.16/41

Finite Automata: Search

q0 q1 q2 q3st e n
er m

ǫ r

ǫ

s

ǫ

Failure!
German adjective ending

Input: klein + er + es

Finite State Methods for Morphology – p.17/41

Finite Automata: Search

q0 q1 q2 q3st e n
er m

ǫ r

ǫ

s

ǫ

Backtracking
German adjective ending

Input: klein + er + es

Finite State Methods for Morphology – p.18/41

Finite Automata: Search

q0 q1 q2 q3st e n
er m

ǫ r

ǫ

s

ǫ

Backtracking

Failure!

German adjective ending

Input: klein + er + es

Finite State Methods for Morphology – p.18/41

Finite Automata: Search

q0 q1 q2 q3st e n

er m

ǫ r

ǫ

s

ǫ

Backtracking
German adjective ending

Input: klein + er + es

Finite State Methods for Morphology – p.19/41

Finite Automata: Search

q0 q1 q2 q3st e n
er m

ǫ r

ǫ

s

ǫ

Failure!
German adjective ending

Input: klein + er + es

Finite State Methods for Morphology – p.20/41

Finite Automata: Search

q0 q1 q2 q3st e n
er m

ǫ r

ǫ

s

ǫ

Backtracking
German adjective ending

Input: klein + er + es

Finite State Methods for Morphology – p.21/41

Finite Automata: Search

q0 q1 q2 q3st e n
er m

ǫ r

ǫ

s

ǫ

Failure!
German adjective ending

Input: klein + er + es

Finite State Methods for Morphology – p.22/41

Finite Automata: Search

q0 q1 q2 q3st e n
er m

ǫ r

ǫ

s

ǫ

Backtracking
German adjective ending

Input: klein + er + es

Finite State Methods for Morphology – p.23/41

Finite Automata: Search

q0 q1 q2 q3st e n
er m

ǫ r

ǫ

s

ǫ

Backtracking

Success!

German adjective ending

Input: klein + er + es

Finite State Methods for Morphology – p.23/41

Nondeterministic vs. Deterministic

Search becomes a problem in big automata

Solution: determinisation
the transition relation has to be a total function
Q×Σ → Q: exactly one choice
for every nondeterministic automaton, a
deterministic automaton can be constructed that
accepts the same language
recognition linear in size of the string
but: the size of the automaton can be exponential in
size of original automaton

Finite State Methods for Morphology – p.24/41

Advantages of Finite Automata

efficiency
very fast if deterministic or low-degree
non-determinism
space: compressed representations of data

system development and maintenance
modular design and automatic compilation of system
components
high level specifications

language modelling
uniform framework for modelling dictionaries and
rules

Finite State Methods for Morphology – p.25/41

FSA for Morphology

Let’s first have a look at concatenative morphology
cats : cat + s
unbelieveable: un + believe + able

Use different automata for
prefixes
base form ⇒ lexicon (we’ll do this first)
suffixes

and combine them with concatenation

recognition is not enough: analysis should return
information, e.g., inflectional class

idea: associate final states with information

Finite State Methods for Morphology – p.26/41

Lexicon representation

Why not simply list all words?

Finite State Methods for Morphology – p.27/41

Lexicon representation

Why not simply list all words?

stiff pos
stiffer comp
stiffest sup
stiffly adv
still pos & adv
stiller comp
stillest adv
stout pos & adv
stouter comp
stoutest sup
stony pos
stonier com
...

large, wasteful, incomplete

Finite State Methods for Morphology – p.27/41

Lexicon representation

Why not simply list all words?

stiff pos
stiffer comp
stiffest sup
stiffly adv
still pos & adv
stiller comp
stillest adv
stout pos & adv
stouter comp
stoutest sup
stony pos
stonier com
...

large, wasteful, incomplete

no (morphological) handling of
new words

Finite State Methods for Morphology – p.27/41

Lexicon representation

Why not simply list all words?

stiff pos
stiffer comp
stiffest sup
stiffly adv
still pos & adv
stiller comp
stillest adv
stout pos & adv
stouter comp
stoutest sup
stony pos
stonier com
...

large, wasteful, incomplete

no (morphological) handling of
new words

what about languages with a
more productive morphology,
e.g., Finnish or Turkish?

Finite State Methods for Morphology – p.27/41

Lexicon representation

Why not simply list all words?

stiff pos
stiffer comp
stiffest sup
stiffly adv
still pos & adv
stiller comp
stillest adv
stout pos & adv
stouter comp
stoutest sup
stony pos
stonier com
...

large, wasteful, incomplete

no (morphological) handling of
new words

what about languages with a
more productive morphology,
e.g., Finnish or Turkish?

Encode each phenomenon /
process in one automaton

Combine them and get an effi-
cient machine

Finite State Methods for Morphology – p.27/41

Lexicon representation

stiff pos
stiffer comp
stiffest sup
stiffly adv
still pos & adv
stiller comp
stillest adv
stout pos & adv
stouter comp
stoutest sup
stony pos
stonier com
...

Separate base form and modifications
e.g., (inflectional) affixes:

stiff
still
stout
stony
stolen
straight
...

+ ǫ pos
+ er comp
+ est sup
+ ly adv really?

Other morphological processes like un-
negation:
un + happy
un + clear + ly

Finite State Methods for Morphology – p.28/41

Lexicon Automaton

. . ., sandy, still, stolen, stony, stout, . . .

1. construct a letter tree (or trie); leaves ≡ final nodes

s

. . .
t

. . .

r

...

...

t

i

o

a

l
u

n

l

n

l

d y

e n

t

y

Finite State Methods for Morphology – p.29/41

Lexicon Automaton

. . ., sandy, still, stolen, stony, stout, . . .

1. construct a letter tree (or trie); leaves ≡ final nodes

2. associate the leaves with lexical information

s

. . .
t

. . .

r

...

...

t

i

o

a

l
u

n

l

n

l

d y

-ly-adv

+ly-adv, y→i

e n

t

y

-ly-adv

+ly-adv

+ly-adv, y→i

Finite State Methods for Morphology – p.29/41

Lexicon Automaton

. . ., sandy, still, stolen, stony, stout, . . .

1. construct a letter tree (or trie); leaves ≡ final nodes

2. associate the leaves with lexical information

3. merge the nodes with identical information
minimize the automaton

s

. . .
t

. . .

r

...

...

t

i

o

a

l
u

n

l

n

e n

t

y

-ly-adv

+ly-adv

+ly-adv, y→i

l

d

Finite State Methods for Morphology – p.29/41

Suffixes: German Adjectives

q0 q1 q2 q3st e n
er m

ǫ r

ǫ

s

ǫ

Only one final state:
How to get the
different values?

Finite State Methods for Morphology – p.30/41

Suffixes: German Adjectives

q0 q1 q2 q3st e n
er m

ǫ r

ǫ

s

ǫ

final states with
different information
can not be
combined: expand
automaton

e

r
m . . .

n . . .
s . . .

e

. . .n
m . . .

r . . .
s omp+ntr+sg+(nom|a)

s

t
e

n . . .

m . . .

r . . .
s sup+ntr+sg+(nom|a)

Finite State Methods for Morphology – p.30/41

Combining the Levels

q0

q1un

ǫ adj-lex

q2+ly

q3-ly

q4

q5

q6

ly

est
er

est

er

What about: un. . . with big; . . .ly with still?

Finite State Methods for Morphology – p.31/41

Combining the Levels

q0

q1un

ǫ adj-lex

q2+ly

q3-ly

q4

q5

q6

ly

est
er

est

er

q′
1ǫ

+un

-un

What about: un. . . with big; . . .ly with still?

Split startnodes in adj-lex, like the final nodes

But: splits the lexicon, less compact

Alternative: special flags that are handled by the
machinery

Finite State Methods for Morphology – p.31/41

Two-Level Morphology

Represents a word as correspondence between two
levels

Lexical level: abstract morphemes and features
Surface level: the actual spelling of the word

Can be implemented using finite state transducers

A finite state transducer rewrites the input onto a
second, additional tape

Surface

Lexical

c a t s

c a t +N +PL

Finite State Methods for Morphology – p.32/41

Automaton vs. Transducer

Finite-state Automaton
Arcs are labeled with symbols like a and b
Accepts strings like aaab
Defines a regular language: { a, ab, aab, aaab, . . . }

Finite-state Transducer
Arcs are labeled with symbol pairs like a:b and b:b,
but also b:ǫ and ǫ:a (and b as shorthand for b:b)
Accepts a pair of strings like aaab:aabb
Defines a regular relation: { a:b, aa:bb, aaa:bbb, . . . }

We will use it to accept string pairs like cat+N+PL:cats
and fox+N+PL:foxes

Finite State Methods for Morphology – p.33/41

Four Views on Transducers

Surface

Lexical

c a t s

c a t +N +PL

1. Recognizer: machine that accepts or rejects pairs of
strings

2. Generator: machine that outputs pairs of strings

3. Translator: machine that reads one string and outputs
another string (in both directions)

4. Set Relator: machine that computes relations between
sets

Finite State Methods for Morphology – p.34/41

Cascaded Transducers

To accomodate for all spelling / pronounciation
changes, one transducer alone is not powerful enough

Use intermediate tapes that contain the output of one
transducer and serves as input to another transducer

To handle irregular spelling changes, we can add
intermediate tapes with intermediate symbols:
ˆ for morpheme boundary, # for word boundary

Surface

Lexical

f o x ˆ s #

f o x +N +PL

Finite State Methods for Morphology – p.35/41

Some English Orthograpic Rules

English orthographic rules that apply at particular
morpheme boundaries

Name Description of rule Example
consonant
doubling

consonant doubled before
-ing/-ed

beg / begging

e-deletion silent e dropped before
-ing/-ed

make / making

e-insertion e added between -s, -z, -x,
-ch, -sh and -s

watch /
watches

y-replacement -y changes to -ie before -s,
to -i before -ed

try / tries

k-insertion verbs ending with vowel
+ -c add -k

panic /
panicked

Finite State Methods for Morphology – p.36/41

Orthograpic Rules II

Spelling rules take the concatenation of morphemes –
the intermediate tape – as input and produce the
surface form

Example: e-insertion rule is applied to the intermediate
form foxˆs#

Surface

Intermediate

Lexical

f o x e s

f o x ˆ s #

f o x +N +PL

Finite State Methods for Morphology – p.37/41

e-Insertion
. * ((x|z|s) ˆ: ǫ ǫ:e

| ¬(x|z|s) ˆ: ǫ) s#

q0 q1 q2 q3 q4

q5

z,s,x

ˆ:ǫ, #, ⋆

#,⋆

z,s,x

ˆ:ǫ
z,x

#, ⋆

ǫ:e s

#

ˆ:ǫ
s

z,s,x
⋆

rule: ((z|s|x) ˆ:ǫ ǫ:e | ¬(z|s|x) ˆ:ǫ) s #

⋆: all pairs not in this transducer, remember y is y:y

States q0 and q1 accept default pairs like
catˆs#:cats#

State q5 rejects incorrect pairs like foxˆs#:foxs#

Finite State Methods for Morphology – p.38/41

y-Replacement

q0 q1

q2 q3 q4 q5

y:i

ˆ:e⋆

ˆ:ǫ s:s #:#

Ex.: spy+s → spies

rule: .* ((y:i ˆ:e)|(¬ y ˆ:ǫ)) #

All these machines do not change input to which they
do not apply

Nevertheless, the rule writer must take care of all
interactions

Finite State Methods for Morphology – p.39/41

Summary

The task of morphological analysis/generation

(Very short) introduction to formal languages

Basics of regular languages

Nondeterministic and deterministic finite automata

Applying finite state techniques to morphological
knowledge

Lexicon: compacted tries
Concatenative phenomena: finite automata
Associating information with final states
Derivational phenomena: finite state transducers

Finite State Methods for Morphology – p.40/41

ReferencesBeesley, Kenneth R. and Lauri Karttunen (2003). Finite-State Morphology.CSLI Publiations. www.fsmbook.comJurafsky, Daniel and James H. Martin (2000). Speeh and LanguageProessing. An Introdution to Natural Language Proessing, ComputationalLinguistis and Speeh Reognition. New Jersey: Prentie Hall.Koskenniemi, Kimmo (1983). Two-level morphology: a general omputationalmodel for word-form reognition and prodution. Publiation No:11,University of Helsinki, Department of General Linguistis, 1983.Mohri, Mehryar (1996). On some Appliations of �nite-state automata theoryto natural language proessing. In: Journal of Natural Language Egineering,2, pp 1-20.Xerox Finite State Compiler (Web Demo):
http://www.xrce.xerox.com/competencies/content-anal ysis/

fsCompiler/fsinput.html

Finite State Methods for Morphology – p.41/41

	Morphological Parsing
	Morphological Knowledge
	Detour: Describing Languages
	Formal Languages - Definitions
	Formal Grammars - Definitions
	Chomsky Hierarchy
	Regular Languages
	Properties of Regular Languages
	Finite Automata
	Nondeterministic Finite Automata
	Closure Properties
	Finite Automata: Search
	Finite Automata: Search
	Finite Automata: Search
	Finite Automata: Search
	Finite Automata: Search
	Finite Automata: Search
	Finite Automata: Search
	Finite Automata: Search
	Finite Automata: Search
	Finite Automata: Search
	Finite Automata: Search
	Nondeterministic vs. Deterministic
	Advantages of Finite Automata
	FSA for Morphology
	Lexicon representation
	Lexicon representation
	Lexicon Automaton
	Suffixes: German Adjectives
	Combining the Levels
	Two-Level Morphology
	Automaton vs. Transducer
	Four Views on Transducers
	Cascaded Transducers
	Some English Orthograpic Rules
	Orthograpic Rules II
	e-Insertion
	y-Replacement
	Summary
	References

