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Morphological Parsing

Break a surface form into morphemes:
foxes into fox (noun stem) and -e -s (plural suffix +
e-insertion)

Compute stem and features
goose → goose +N +SGor +V

geese → goose +N +PL

gooses → goose +V +3SG

Needed for (among others)
spell-checking: is steadyly or steadily correct?
identify a word’s part-of-speech
reduce a word to its stem
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Morphological Knowledge

Components needed in a morphological parser:

1. Lexicon: list of stems and class information (base,
inflectional class etc.)

2. Morphotactics: a model of morphological processes
like English adjective inflection on the last slide

lexical and morphotactic knowlegde will be encoded
using finite-state automata

3. Orthography: a model of how the spelling changes
when morphemes combine, e.g.,

city+s → cities
in → il in context of l, like in- +legal
will be modeled using finite-state transducers
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Detour: Describing Languages

Language: a set of finite sequences of symbols

Symbols can be anything like graphemes, phonemes,
etc.

Alphabet: the inventory of symbols

We want formal devices to describe the strings in a
language
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Formal Languages - Definitions

Alphabet Σ (Sigma): a nonempty finite set of symbols

Strings of a language: arbitrary finite sequences of
symbols in Σ

ǫ (epsilon) denotes the empty string
Σ* is the set of all strings over Σ, including ǫ

A language L is a subset of Σ*, L ⊆ Σ*
grammatical sentences w ∈ L
ungrammatical sentences v 6∈ L Σ*

L
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Formal Grammars - Definitions

Mathematical devices to describe languages

Goal: separate the grammatical from the
ungrammatical strings

One of the devices: rule systems
Two alphabets: terminals Σ, nonterminals N
Rules rewrite strings in (Σ∪ N)* into new strings in
(Σ∪ N)*

Languages differ in complexity

Complexity depends on the type of rule system / device
needed
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Chomsky Hierarchy

Type 3: regular languages
Rules of type A → α, A → α B; A,B ∈ N; α ∈ Σ*

Type 2: context free languages
A → ψ; ψ ∈ (Σ ∪ N)*

Type 1: context sensitive languages
α A β → αψβ; α, β ∈ Σ*

Type 0: unrestricted
α A β → ψ

The following inclusions hold:
Type 3 ⊂ Type 2 ⊂ Type 1 ⊂ Type 0
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Regular Languages

Simplest formal languages, rules A → x, A → x B

Alternative characterization:
use symbols from the alphabet and combine them using

concatenation •

alternative |
Kleene star * (repeat zero or more times)

Examples:

{the}•{gifted}•{student}

{the}•({very}|{extremely})•{gifted}•{student}

({0}|{1}|{2}|{3}|{4}|{5}|{6}|{7}|{8}|{9})*•({0}|{2}|{4}|{6}|{8})
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Properties of Regular Languages

Rule systems are right linear

Nonterminal always at the right end of the rule’s right
hand side: A → x , A → x B

A linear (in size of the string) number of steps is enough
to answer: w ∈ L ?
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Properties of Regular Languages

Rule systems are right linear

Nonterminal always at the right end of the rule’s right
hand side: A → x , A → x B

A linear (in size of the string) number of steps is enough
to answer: w ∈ L ?

Can describe arbitrary long strings, e.g., sheep talk:
ba(a)*h

Can describe infinite languages

What is the simplest thing not possible (Hotz’s question)
anbn, n ∈ N only finite counting!
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Properties of Regular Languages

Rule systems are right linear

Nonterminal always at the right end of the rule’s right
hand side: A → x , A → x B

A linear (in size of the string) number of steps is enough
to answer: w ∈ L ?

Can describe arbitrary long strings, e.g., sheep talk:
ba(a)*h

Can describe infinite languages

What is the simplest thing not possible (Hotz’s question)
anbn, n ∈ N only finite counting!

Equivalent to finite automata
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Finite Automata

A finite set of states Q, containing a start state q
0

and a
subset of final states F

An input tape containing the input string and a pointer
to mark the current input position

A transition relation δ : Q × (Σ ∪ {ǫ}) × Q

Possible moves depend on:
the current state
the current input symbol

every move advances the input pointer

graphical representation: directed graph, states are
nodes, edges are state transitions

Finite State Methods for Morphology – p.10/41



Nondeterministic Finite Automata

Automata where δ is a relation and ǫ arcs are allowed
are called nondeterministic automata

The move may not be uniquely determined based on
the next input symbol

ex: the (extremely gifted|ǫ) gifted* student
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Nondeterministic Finite Automata

Automata where δ is a relation and ǫ arcs are allowed
are called nondeterministic automata

The move may not be uniquely determined based on
the next input symbol

ex: the (extremely gifted|ǫ) gifted* student

q0 q1
the

q2
extremely

q3

gifted

ǫ

gifted

q4

student
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Closure Properties

Language type A is closed unter operation x means:
applying x to members of A results in element of the
same type

Regular languages are closed under
Concatenation, Union (trivial)
Complementation: Exchange final and nonfinal
states of an automaton
Intersection: L1 ∩ L2 = ¬(¬L1 ∪ ¬L2)

Applicability of these operations facilitates
modularization

E.g., concatenate automaton for base word forms with
one for inflectional suffixes
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Finite Automata: Search

q0 q1 q2 q3st e n
er m

ǫ r

ǫ

s

ǫ

German adjective ending

Input: klein + er + es
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Finite Automata: Search

q0 q1 q2 q3st e n
er m

ǫ r

ǫ

s

ǫ

Failure!
German adjective ending

Input: klein + er + es
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Finite Automata: Search

q0 q1 q2 q3st e n
er m

ǫ r

ǫ

s

ǫ

Backtracking

Success!

German adjective ending

Input: klein + er + es
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Nondeterministic vs. Deterministic

Search becomes a problem in big automata

Solution: determinisation
the transition relation has to be a total function
Q×Σ → Q: exactly one choice
for every nondeterministic automaton, a
deterministic automaton can be constructed that
accepts the same language
recognition linear in size of the string
but: the size of the automaton can be exponential in
size of original automaton
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Advantages of Finite Automata

efficiency
very fast if deterministic or low-degree
non-determinism
space: compressed representations of data

system development and maintenance
modular design and automatic compilation of system
components
high level specifications

language modelling
uniform framework for modelling dictionaries and
rules
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FSA for Morphology

Let’s first have a look at concatenative morphology
cats : cat + s
unbelieveable: un + believe + able

Use different automata for
prefixes
base form ⇒ lexicon (we’ll do this first)
suffixes

and combine them with concatenation

recognition is not enough: analysis should return
information, e.g., inflectional class

idea: associate final states with information
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Lexicon representation

Why not simply list all words?
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Lexicon representation

Why not simply list all words?

stiff pos
stiffer comp
stiffest sup
stiffly adv
still pos & adv
stiller comp
stillest adv
stout pos & adv
stouter comp
stoutest sup
stony pos
stonier com
...

large, wasteful, incomplete
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stiff pos
stiffer comp
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stiffly adv
still pos & adv
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stout pos & adv
stouter comp
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large, wasteful, incomplete

no (morphological) handling of
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what about languages with a
more productive morphology,
e.g., Finnish or Turkish?
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Lexicon representation

Why not simply list all words?

stiff pos
stiffer comp
stiffest sup
stiffly adv
still pos & adv
stiller comp
stillest adv
stout pos & adv
stouter comp
stoutest sup
stony pos
stonier com
...

large, wasteful, incomplete

no (morphological) handling of
new words

what about languages with a
more productive morphology,
e.g., Finnish or Turkish?

Encode each phenomenon /
process in one automaton

Combine them and get an effi-
cient machine
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Lexicon representation

stiff pos
stiffer comp
stiffest sup
stiffly adv
still pos & adv
stiller comp
stillest adv
stout pos & adv
stouter comp
stoutest sup
stony pos
stonier com
...

Separate base form and modifications
e.g., (inflectional) affixes:

stiff
still
stout
stony
stolen
straight
...















+ ǫ pos
+ er comp
+ est sup
+ ly adv really?

Other morphological processes like un-
negation:
un + happy
un + clear + ly
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Lexicon Automaton

. . ., sandy, still, stolen, stony, stout, . . .

1. construct a letter tree (or trie); leaves ≡ final nodes

s

. . .
t

. . .

r

...

...

t

i

o

a

l
u

n

l

n

l

d y

e n

t

y
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Lexicon Automaton

. . ., sandy, still, stolen, stony, stout, . . .

1. construct a letter tree (or trie); leaves ≡ final nodes

2. associate the leaves with lexical information

s

. . .
t

. . .

r

...

...

t

i

o

a

l
u

n

l

n

l

d y

-ly-adv

+ly-adv, y→i

e n

t

y

-ly-adv

+ly-adv

+ly-adv, y→i
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Lexicon Automaton

. . ., sandy, still, stolen, stony, stout, . . .

1. construct a letter tree (or trie); leaves ≡ final nodes

2. associate the leaves with lexical information

3. merge the nodes with identical information
minimize the automaton

s

. . .
t

. . .

r

...

...

t

i

o

a

l
u

n

l

n

e n

t

y

-ly-adv

+ly-adv

+ly-adv, y→i

l

d
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Suffixes: German Adjectives

q0 q1 q2 q3st e n
er m

ǫ r

ǫ

s

ǫ

Only one final state:
How to get the
different values?

Finite State Methods for Morphology – p.30/41



Suffixes: German Adjectives

q0 q1 q2 q3st e n
er m

ǫ r

ǫ

s

ǫ

final states with
different information
can not be
combined: expand
automaton

e

r
m . . .

n . . .
s . . .

e

. . .n
m . . .

r . . .
s omp+ntr+sg+(nom|a)

s

t
e

n . . .

m . . .

r . . .
s sup+ntr+sg+(nom|a)

Finite State Methods for Morphology – p.30/41



Combining the Levels

q0

q1un

ǫ adj-lex

q2+ly

q3-ly

q4

q5

q6

ly

est
er

est

er

What about: un. . . with big; . . .ly with still?
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Combining the Levels

q0

q1un

ǫ adj-lex

q2+ly

q3-ly

q4

q5

q6

ly

est
er

est

er

q′
1ǫ

+un

-un

What about: un. . . with big; . . .ly with still?

Split startnodes in adj-lex, like the final nodes

But: splits the lexicon, less compact

Alternative: special flags that are handled by the
machinery
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Two-Level Morphology

Represents a word as correspondence between two
levels

Lexical level: abstract morphemes and features
Surface level: the actual spelling of the word

Can be implemented using finite state transducers

A finite state transducer rewrites the input onto a
second, additional tape

Surface

Lexical

c a t s

c a t +N +PL
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Automaton vs. Transducer

Finite-state Automaton
Arcs are labeled with symbols like a and b
Accepts strings like aaab
Defines a regular language: { a, ab, aab, aaab, . . . }

Finite-state Transducer
Arcs are labeled with symbol pairs like a:b and b:b,
but also b:ǫ and ǫ:a (and b as shorthand for b:b)
Accepts a pair of strings like aaab:aabb
Defines a regular relation: { a:b, aa:bb, aaa:bbb, . . . }

We will use it to accept string pairs like cat+N+PL:cats
and fox+N+PL:foxes
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Four Views on Transducers

Surface

Lexical

c a t s

c a t +N +PL

1. Recognizer: machine that accepts or rejects pairs of
strings

2. Generator: machine that outputs pairs of strings

3. Translator: machine that reads one string and outputs
another string (in both directions)

4. Set Relator: machine that computes relations between
sets
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Cascaded Transducers

To accomodate for all spelling / pronounciation
changes, one transducer alone is not powerful enough

Use intermediate tapes that contain the output of one
transducer and serves as input to another transducer

To handle irregular spelling changes, we can add
intermediate tapes with intermediate symbols:
ˆ for morpheme boundary, # for word boundary

Surface

Lexical

f o x ˆ s #

f o x +N +PL
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Some English Orthograpic Rules

English orthographic rules that apply at particular
morpheme boundaries

Name Description of rule Example
consonant
doubling

consonant doubled before
-ing/-ed

beg / begging

e-deletion silent e dropped before
-ing/-ed

make / making

e-insertion e added between -s, -z, -x,
-ch, -sh and -s

watch /
watches

y-replacement -y changes to -ie before -s,
to -i before -ed

try / tries

k-insertion verbs ending with vowel
+ -c add -k

panic /
panicked
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Orthograpic Rules II

Spelling rules take the concatenation of morphemes –
the intermediate tape – as input and produce the
surface form

Example: e-insertion rule is applied to the intermediate
form foxˆs#

Surface

Intermediate

Lexical

f o x e s

f o x ˆ s #

f o x +N +PL
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e-Insertion
. * ((x|z|s) ˆ: ǫ ǫ:e

| ¬(x|z|s) ˆ: ǫ) s#

q0 q1 q2 q3 q4

q5

z,s,x

ˆ:ǫ, #, ⋆

#,⋆

z,s,x

ˆ:ǫ
z,x

#, ⋆

ǫ:e s

#

ˆ:ǫ
s

z,s,x
⋆

rule: ((z|s|x) ˆ:ǫ ǫ:e | ¬(z|s|x) ˆ:ǫ) s #

⋆: all pairs not in this transducer, remember y is y:y

States q0 and q1 accept default pairs like
catˆs#:cats#

State q5 rejects incorrect pairs like foxˆs#:foxs#
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y-Replacement

q0 q1

q2 q3 q4 q5

y:i

ˆ:e⋆

ˆ:ǫ s:s #:#

Ex.: spy+s → spies

rule: .* ((y:i ˆ:e)|(¬ y ˆ:ǫ)) #

All these machines do not change input to which they
do not apply

Nevertheless, the rule writer must take care of all
interactions
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Summary

The task of morphological analysis/generation

(Very short) introduction to formal languages

Basics of regular languages

Nondeterministic and deterministic finite automata

Applying finite state techniques to morphological
knowledge

Lexicon: compacted tries
Concatenative phenomena: finite automata
Associating information with final states
Derivational phenomena: finite state transducers
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