FLST

Grammars and Parsing

Hans Uszkoreit

What Happens in

BETWEEN?

What Happens in Between?

sound waves
activation of concepts

What Happens in

BETWEEN?

sound waves
Grammar
activation of concepts

What Happens in

BETWEEN?

sound waves
Grammar
activation of concepts

What Happens in

BETWEEN?

sound waves
Grammar
activation of concepts

What Happens in

BETWEEN?

sound waves
Grammar
activation of concepts

What Happens in

BETWEEN?

THREE TRADITIONS

Grammatik

$$
S \rightarrow N P V P
$$

Grammatik

$$
S \rightarrow N P V P
$$

Grammatik

$$
\begin{aligned}
& S \rightarrow N P \text { VP } \\
& \mathrm{VP} \rightarrow \mathrm{~V} \text { NP NP }
\end{aligned}
$$

Grammar

$$
\begin{aligned}
& S \rightarrow N P \text { VP } \\
& \mathrm{VP} \rightarrow \mathrm{~V} \text { NP NP }
\end{aligned}
$$

$$
\vee \rightarrow \text { gave }
$$

single symbols strings
non-terminal
terminals
unspecified symbols
start symbol
empty string
integers

A, B, C, ...
a, b, c, \ldots
$\alpha, \beta, \gamma, \ldots$

S
e
$\ldots, \mathrm{i}, \mathrm{j}, \mathrm{k}, \mathrm{I}, \mathrm{m}, \mathrm{n}, \ldots$

Why Syntax

- Einen Hund hat dieser Mann gebissen.
- Ein Hund hat diesen Mann gebissen.
- This man has bitten a dog.
- A dog this man has bitten.
- A dog has bitten this man.
- Peter promised Paul, to process the files.
- Peter persuaded Paul, to process the files.

Formal Grammar

A language over an alphabet (vocabulary) Σ is a subset of Σ^{*}.

A formal grammar G_{L} for a language L is a quadruple $\left(V_{N}, V_{T},\{S\}, P\right)$.
V_{N} - non-terminal vocabulary (auxiliary vocabulary)
V_{T} - terminal vocabulary

$$
\left(\mathrm{V}_{\mathrm{T}} \cap \mathrm{~V}_{\mathrm{N}}=\varnothing, \quad \mathrm{L} \subseteq \mathrm{~V}_{\mathrm{T}}^{*}, \quad \mathrm{~V}=\mathrm{V}_{\mathrm{T}} \cup \mathrm{~V}_{\mathrm{N}}\right)
$$

$\{S\}$ - singleton with the start symbol (set of axioms)

P - set of productions, rule set set of rules of the form $\omega_{1} \phi \omega_{2} \rightarrow \omega_{1} \psi \omega_{2}$ usually written as $\phi \rightarrow \psi$

derivation

relation "follows":
If $G=\left(V_{N}, V_{T},\{S\}, P\right)$, then ψ follows from ϕ according to G iff there are strings ϕ_{1}, ϕ_{2}, χ, ω, so that $\phi=\phi_{1}, \chi, \phi_{2}$ und $\psi=\phi_{1}, \omega, \phi_{2}$ und
$\chi \rightarrow \omega \in P$.
Notation: $\quad \underset{\text { G }}{\#}$
derivation:
A sequence of strings $\phi_{1}, \phi_{1}, \ldots, \phi_{\mathrm{n}}$ is a derivation according to G iff $!_{\mathrm{i}} \quad!_{\mathrm{i}+1}$ for all $\mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{n}$.

If there is derivable according to G from ϕ to ψ we can write this: ! $\quad \underset{\mathrm{G}}{\text { (}}$
The relation derivable is transitive and is moreover defined to be reflexive.

The language L : A string ω is in L according to G_{L} iff the following three conditions are fulfilled:

1. $\omega \in V_{T}^{*}$
2. S_{G} !
3. There is no χ, so that ! \# and $\omega \neq \chi$.

G

We say that G_{L} generates the language L. The language L generated by G is also written as $L(G)$.

Weak Equivalence: Two grammar G_{1} and G_{2} are weakly equivalent, if they generate the same language.

Types of Grammars

Type 0 (unrestricted rewriting systems):

Every formal grammar according to the definition is of type 0 .

Type 1 (context sensitive grammars):

Every production is of the form $\phi \mathrm{A} \psi \rightarrow \phi \omega \psi$, where $A \in \mathrm{~V}_{\mathrm{N}}, \omega \neq \varepsilon$.

Type 2 (context free grammars):

Every production is of the form $\mathrm{A} \rightarrow \omega$, where $\omega \neq \varepsilon$.

Type 3 (regular grammars):
Every production is of the form $\mathrm{A} \rightarrow \mathrm{xB}$ or $\mathrm{A} \rightarrow \mathrm{x}$, where $\mathrm{x} \neq \varepsilon$.

S
 NP VP
 DET ADJ N VP
 DET ADJ N V NP DET ADJ N V DET ADJ N

ein kleines Mädchen sucht ein kleines Mädchen

Trees

the notion of syntactic constituent tree

coded information

1. the hierarchic organisation of a sentence in terms of constituents
2. the assignment of each constituent to a linguistic class (category)
3. the linear sequence of the constituents

relations: immediate dominance - dominance
immediate precedence - precedence
constituent structure tree: quintuple($\mathrm{N}, \mathrm{Q}, \mathrm{D}, \mathrm{P}, \mathrm{L}$)
N - finite set of nodes
Q - finite set of labels
D - weak partial order in $\mathrm{N} \times \mathrm{N}$, the dominance relation (reflexive, transitive und antisymmetric)
P - strong partial order in $N \times N$, the precedence relation
(irreflexive, transitive und asymmetric)
L - function from N into Q , the labelling function

conditions:

(single) root condition
exclusivity condition
no crossing condition / no tangling condition

Conditions

root condition

There is exactly one node that dominates all other nodes of the tree.

exclusivity condition

For any two nodes x and y holds

$$
\begin{array}{ll}
\text { either } & D(x, y) \text { or } D(y, x) \\
\text { or } & P(x, y) \text { or } P(y, x) \\
\text { but never both. }
\end{array}
$$

no-tangling condition
If $P(x, y)$ then for all x^{\prime} dominated by $x\left[D\left(x, x^{\prime}\right)\right]$ and for all $y^{\text {c }}$ dominated by $y\left[D\left(y, y^{\prime}\right)\right]$ that x^{\prime} precedes $y^{\prime}\left[P\left(x^{\prime}, y^{\prime}\right)\right]$

Parsing

- The syntactic analysis of strings according to a grammar we call parsing
- input: terminal string
output: structure of the sentence, i.e. all constituents usually a tree
- parsing algorithms:
top-down vs bottom-up
left-right vs right left vs birectional or island parsing
deterministic vs. non-deterministic

Grammar

transformational grammar

Grammar

