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Motivation

Review: matrix factorization

Decomposing a term-document matrix improves performance for IR:

• Latent Semantic Analysis using Singular Value Decomposition

A = T ·S ·Dt

• Probabilistic Latent Semantic Analysis

W (t,k)←W (t,k)
N

∑
d=1

A(t,d)

∑
K
k ′=1 W (t,k ′)H(k ′,d)

H(k ,d)

• Non-negative Matrix Factorization

A = W ·H
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Motivation

Review: other sparse representations

Distributional semantics:

• Word-Context Matrix: define a word by the company it keeps

• Pair-Pattern Matrix: define a pair of words by how they connect
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Motivation

Anatomy of a vector space

A term-document matrix from Landauer et al. (1998):

c1 c2 c3 c4 c5 m1 m2 m3 m4
human 1 0 0 1 0 0 0 0 0
interface 1 0 1 0 0 0 0 0 0
computer 1 1 0 0 0 0 0 0 0
user 0 1 1 0 1 0 0 0 0
system 0 1 1 2 0 0 0 0 0
response 0 1 0 0 1 0 0 0 0
time 0 1 0 0 1 0 0 0 0
EPS 0 0 1 1 0 0 0 0 0
survey 0 1 0 0 0 0 0 0 1
trees 0 0 0 0 0 1 1 1 0
graph 0 0 0 0 0 0 1 1 1
minor 0 0 0 0 0 0 0 1 1
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Motivation

Anatomy of a vector space

A toy corpus from Landauer et al. (1998):

Example of text data: Titles of Some Technical Memos

c1: Human machine interface for ABC computer applications
c2: A survey of user opinion of computer system response time
c3: The EPS user interface management system
c4: System and human system engineering testing of EPS
c5: Relation of user perceived response time to error measurement

m1: The generation of random, binary, ordered trees
m2: The intersection graph of paths in trees
m3: Graph minors IV: Widths of trees and well-quasi-ordering
m4: Graph minors: A survey

C. Greenberg and S. Thater (UdS CS / CoLi) Continuous space representations 21 July 2016 5 / 31



Motivation

Anatomy of a vector space

The word-context matrix:

human 0 1 1 0 2 0 0 1 0 0 0 0
interface 1 0 1 1 1 0 0 1 0 0 0 0
computer 1 1 0 1 1 1 1 0 1 0 0 0
user 0 1 1 0 2 2 2 1 1 0 0 0
system 2 1 1 2 2 1 1 3 1 0 0 0
response 0 0 1 2 1 0 2 0 1 0 0 0
time 0 0 1 2 1 2 0 0 1 0 0 0
EPS 1 1 0 1 3 0 0 0 0 0 0 0
survey 0 0 1 1 1 1 1 0 0 0 1 1
trees 0 0 0 0 0 0 0 0 0 0 2 1
graph 0 0 0 0 0 0 0 0 1 2 0 2
minors 0 0 0 0 0 0 0 0 1 1 2 0
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Enhancing the word-context matrix

Enhancing the word-context matrix

Levy et al. (2015): let’s make this thing better! (hyperparameters)

human 0 1 1 0 2 0 0 1 0 0 0 0
interface 1 0 1 1 1 0 0 1 0 0 0 0
computer 1 1 0 1 1 1 1 0 1 0 0 0
user 0 1 1 0 2 2 2 1 1 0 0 0
system 2 1 1 2 2 1 1 3 1 0 0 0
response 0 0 1 2 1 0 2 0 1 0 0 0
time 0 0 1 2 1 2 0 0 1 0 0 0
EPS 1 1 0 1 3 0 0 0 0 0 0 0
survey 0 0 1 1 1 1 1 0 0 0 1 1
trees 0 0 0 0 0 0 0 0 0 0 2 1
graph 0 0 0 0 0 0 0 0 1 2 0 2
minors 0 0 0 0 0 0 0 0 1 1 2 0
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Enhancing the word-context matrix Pre-processing hyperparameters

Dynamic context window (dyn)

Pennington et al. (2014): Weigh contexts with harmonic function: 5
5 ,

4
5 ,

3
5 ,

2
5 ,

1
5

0.0 1.0 0.8 0.0 2.0 0.0 0.0 0.8 0.0 0.0 0.0 0.0
1.0 0.0 1.0 1.0 1.0 0.0 0.0 0.8 0.0 0.0 0.0 0.0
0.8 1.0 0.0 1.0 1.0 0.8 0.6 0.0 0.8 0.0 0.0 0.0
0.0 1.0 1.0 0.0 1.6 1.6 1.2 1.0 1.0 0.0 0.0 0.0
2.0 1.0 1.0 1.6 1.6 1.0 0.8 2.2 0.6 0.0 0.0 0.0
0.0 0.0 0.8 1.6 1.0 0.0 2.0 0.0 0.4 0.0 0.0 0.0
0.0 0.0 0.6 1.2 0.8 2.0 0.0 0.0 0.2 0.0 0.0 0.0
0.8 0.8 0.0 1.0 2.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.8 1.0 0.6 0.4 0.2 0.0 0.0 0.0 0.8 1.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.8 1.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8 1.8 0.0 2.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 2.0 0.0
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Enhancing the word-context matrix Pre-processing hyperparameters

Subsampling (sub)

Remove very frequent (stop) words:
before counting→ dirty, after counting→ clean

human 0.0 1.0 0.8 0.0 2.0 0.0 0.0 0.8 0.0 0.0 0.0
interface 1.0 0.0 1.0 1.0 1.0 0.0 0.0 0.8 0.0 0.0 0.0
computer 0.8 1.0 0.0 1.0 1.0 0.8 0.6 0.0 0.0 0.0 0.0
user 0.0 1.0 1.0 0.0 1.6 1.6 1.2 1.0 0.0 0.0 0.0
system 2.0 1.0 1.0 1.6 1.6 1.0 0.8 2.2 0.0 0.0 0.0
response 0.0 0.0 0.8 1.6 1.0 0.0 2.0 0.0 0.0 0.0 0.0
time 0.0 0.0 0.6 1.2 0.8 2.0 0.0 0.0 0.0 0.0 0.0
EPS 0.8 0.8 0.0 1.0 2.2 0.0 0.0 0.0 0.0 0.0 0.0
trees 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.8 1.0
graph 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.8 0.0 2.0
minors 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 2.0 0.0
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Enhancing the word-context matrix Pre-processing hyperparameters

Deleting rare words (del)

Remove very rare words: minimum number of occurrences in training corpus

human 0.0 1.0 0.8 0.0 2.0 0.0 0.0 0.8 0.0 0.0
interface 1.0 0.0 1.0 1.0 1.0 0.0 0.0 0.8 0.0 0.0
computer 0.8 1.0 0.0 1.0 1.0 0.8 0.6 0.0 0.0 0.0
user 0.0 1.0 1.0 0.0 1.6 1.6 1.2 1.0 0.0 0.0
system 2.0 1.0 1.0 1.6 1.6 1.0 0.8 2.2 0.0 0.0
response 0.0 0.0 0.8 1.6 1.0 0.0 2.0 0.0 0.0 0.0
time 0.0 0.0 0.6 1.2 0.8 2.0 0.0 0.0 0.0 0.0
EPS 0.8 0.8 0.0 1.0 2.2 0.0 0.0 0.0 0.0 0.0
graph 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0
minors 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0
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Enhancing the word-context matrix Association metric hyperparameters

Shifted PMI (neg)

Right now: we are counting #(w ,c)

Some of these may happen by chance, especially if w and c are frequent.

Instead, use

PMI(w ,c) = log
#(w ,c)|D|
#(w)#(c)

Better version:

SPPMI(w ,c) = max(PMI(w ,c)− log(k),0)
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Enhancing the word-context matrix Association metric hyperparameters

Shifted PMI (neg)

Using SPPMI with k = 1 (not optimal)

human 0.0 0.4 0.8 0.0 0.1 0.0 0.0 0.1 0.0 0.0
interface 0.4 0.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0
computer 0.8 0.0 0.0 1.0 1.0 0.8 0.6 0.0 0.0 0.0
user 0.0 1.0 1.0 0.0 1.6 1.6 1.2 1.0 0.0 0.0
system 0.1 1.0 1.0 1.6 1.6 1.0 0.8 0.2 0.0 0.0
response 0.0 0.0 0.8 1.6 1.0 0.0 1.1 0.0 0.0 0.0
time 0.0 0.0 0.6 1.2 0.8 1.1 0.0 0.0 0.0 0.0
EPS 0.1 0.0 0.0 1.0 0.2 0.0 0.0 0.0 0.0 0.0
graph 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.7
minors 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.7 0.0
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Enhancing the word-context matrix Association metric hyperparameters

Context distribution smoothing (cds)

All context counts are raised to the power of α = 0.75
lowers PMI of w co-occurring with rare context c

human 0.0 1.0 0.8 0.0 2.0 0.0 0.0 0.8 0.0 0.0
interface 1.0 0.0 1.0 1.0 1.0 0.0 0.0 0.8 0.0 0.0
computer 0.8 1.0 0.0 1.0 1.0 0.8 0.6 0.0 0.0 0.0
user 0.0 1.0 1.0 0.0 1.6 1.6 1.2 1.0 0.0 0.0
system 2.0 1.0 1.0 1.6 1.6 1.0 0.8 2.2 0.0 0.0
response 0.0 0.0 0.8 1.6 1.0 0.0 1.6 0.0 0.0 0.0
time 0.0 0.0 0.6 1.2 0.8 1.7 0.0 0.0 0.0 0.0
EPS 0.8 0.8 0.0 1.0 2.2 0.0 0.0 0.0 0.0 0.0
graph 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.2
minors 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.2 0.0
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Enhancing the word-context matrix Post-processing hyperparameters

Adding context vectors (w+c)

1st order similarity (w∗ · c∗):
the tendency of one word to co-occur with another (term-term matrix)

2nd order similarity (wx ·wy ,cx · cy):
the extent to which two words are replaceable

dense methods (e.g. SVD) capture 1st, sparse methods (e.g. SPPMI) do not

1st is less important, but if you have it, you can use it: ~vcat = ~wcat + ~ccat
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Enhancing the word-context matrix Post-processing hyperparameters

Eigenvalue weighting (eig)

Suppose we decompose the word-context matrix using SVD.

First pass assignment: W = T ·S,C = Dt

A better one: W = T ·
√

S,C = Dt ·
√

S

More generally: W = T ·Sp,C = Dt ·S1−p

with p = 0.0,0.5,1.0
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Enhancing the word-context matrix Post-processing hyperparameters

Vector normalization (nrm)

We can normalize across rows, columns, both, or neither.
This is rows:

human 0. 0.4 0.32 0. 0.8 0. 0. 0.32 0. 0.
interface 0.46 0. 0.46 0.46 0.46 0. 0. 0.37 0. 0.
computer 0.37 0.46 0. 0.46 0.46 0.37 0.28 0. 0. 0.
user 0. 0.32 0.32 0. 0.52 0.52 0.39 0.32 0. 0.
system 0.48 0.24 0.24 0.38 0.38 0.24 0.19 0.52 0. 0.
response 0. 0. 0.31 0.62 0.38 0. 0.62 0. 0. 0.
time 0. 0. 0.26 0.52 0.35 0.74 0. 0. 0. 0.
EPS 0.3 0.3 0. 0.37 0.82 0. 0. 0. 0. 0.
graph 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.
minors 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.
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Word embeddings

The predictable idea

Let’s decompose this matrix, too!

• We have already looked at three ways to do it!

• And all three are really slow!
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Word embeddings

The objective function for matrix factorization

The computer’s answer to: how trained is my model?

• Kullback-Leibler divergence: D(A||WH)

• Frobenius norm: 1
2 |A−WH|2

Often, this really means: how likely is my training data?
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Word embeddings

A different objective function

maximize: p(word |context)
for each word in my training corpus

This is a language model.

But, we’re not really trying to predict new words (yet).

We want to predict the (word |context) pairs in the training data.
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Word embeddings

A different objective function

From the analysis in Goldberg and Levy (2014):

Let p(D = 1|w ,c) be the probability that the given pair is present in the
training data (D).

`= argmax
θ

∏
(w ,c)∈D

p(D = 1|w ,c;θ)

And with soft-max for some ~w and~c, this becomes

`= argmax
θ

∑
(w ,c)∈D

logσ(~w ·~c)

But to get this, we could just set all of the vectors equal to each other!
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Word embeddings

A different objective function

`= argmax
θ

∑
(w ,c)∈D

logσ(~w ·~c)+ ∑
(w ,c)∈D′

logσ(−~w ·~c)

where D′ is the set of all combinations that did not occur in the training data.

D′ is huge −→ sample k combinations at a time.

Then, for a single (w ,c) ∈ D,

Skip-gram with negative sampling objective function (Mikolov et al., 2013)

`(w ,c) = logσ(~w ·~c)+ k ·E[logσ(−~w ·~c)]
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Word embeddings

Not different after all

Levy and Goldberg (2014) show that this is equivalent to decomposing the
PMI matrix!

Assuming that ~w ·~c terms are independent:

`(w ,c) = #(w ,c) logσ(~w ·~c)+ k ·#(w) ·#(c)
|D|

logσ(−~w ·~c)

Setting the derivative to zero, we obtain:

~w ·~c = log
#(w ,c) · |D|
#(w) ·#(c)

− logk = PMI(w ,c)− log(k)
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Word embeddings

So why all the fuss about word embeddings?

Existing software packages have default values for the hyperparameters that
are better than using the plain word-context matrix:

• word2vec: http://code.google.com/p/word2vec/

• GloVe : http://nlp.stanford.edu/projects/glove/
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Applications of continuous space representations

A different word-context matrix for every task?

It’s doable, but expensive and not psycholinguistically motivated.

What if we could store all distributional information in one structure?

Distributional Memory (Baroni and Lenci, 2010): store values for
word-link-word triples in a third order tensor.
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Applications of continuous space representations

Syntactic or semantic links (Sayeed and Demberg, 2014)

the donut was eaten by Bob

NMOD

SBJ

VC

LGS

PMOD

the donut was eaten by Bob

ARG1 V ARG0
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Applications of continuous space representations

Applications of Distributional Memory

The W1×LW2 space:

1 Similarity Judgements

2 Synonym Detection

3 Noun Categorization

4 Selectional Preferences or Thematic Fit (Greenberg et al., 2015)
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Applications of continuous space representations

Applications of Distributional Memory

The W1W2×L space:

1 Solving Analogy Problems

2 Relation Classification

3 Qualia Extraction

4 Predicting Characteristic Properties
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Applications of continuous space representations

Summary

1 Motivation

2 Enhancing the word-context matrix
Pre-processing hyperparameters
Association metric hyperparameters
Post-processing hyperparameters

3 Word embeddings

4 Applications of continuous space representations
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Applications of continuous space representations
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Applications of continuous space representations
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Applications of continuous space representations
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