Computational Linguistics Latent Spaces and Matrix Factorization

Clayton Greenberg & Stefan Thater

FR 4.7 Allgemeine Linguistik (Computerlinguistik) Universität des Saarlandes Summer 2016

Goal:

treat document clustering and word clustering on the same footing (same semantic space)

find low dimensional representations

The word document matrix

Document clustering

describe each document by a vector containing the frequencies of the words

Word clustering

describe each word by a vector containing the frequencies of its occurrence in different documents

Joint word and document clustering

The word document matrix:

Enter frequency (or tf-idf) for each word and document in a rectangular scheme of numbers (matrix)

A matrix is an array with two indices

e.g. in a python program this could be A[i][j] with i=1..N and j=1...M When writing, often a subscript notation is used $a_{i,j}$

or a square scheme:

$$A = \begin{pmatrix} a_{1,1} & \dots & a_{1,M} \\ \dots & a_{i,j} & \dots \\ a_{N,1} & \dots & a_{N,M} \end{pmatrix}$$

Specific example of a 2x3 matrix

$$A = \begin{pmatrix} 2 & -5 & 0.5 \\ -2 & 0.1 & -8 \end{pmatrix}$$

The transpose of a matrix

The two indices are swapped

e.g. in a python program this could be At[j][i]=A[i][j] for i=1...N and j=1... M

for the general matrix on the previous slide we have:

$$A^{t} = \begin{pmatrix} a_{1,1} & \dots & a_{1,N} \\ \dots & a_{j,i} & \dots \\ a_{M,1} & \dots & a_{M,N} \end{pmatrix}$$

Specific example of a 2x3 matrix

$$A = \begin{pmatrix} 2 & -5 & 0.5 \\ -2 & 0.1 & -8 \end{pmatrix}$$

What is A^t

Product of two matrices

The elements of a product matrix can be calculated in a python program by

```
for i in range(1,N+1):
    for j in range(1,M+1):
        for k in range(1,K+1):
            C[i][j] += A[i][k]*B[k][j]
```

In math notation

$$C = A \cdot B$$

with

$$c_{i,j} = \sum_{k=1}^{K} a_{i,k} b_{k,j}$$

Unit matrix

Unit matrix: the element are the indicator function

$$a_{i,j} = \delta_{i,j}$$

Example:

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Often the unit matrix is denoted by a 1

Orthogonal matrices

a matrix A is orthogonal if

 $1 = A^t \cdot A$

Is the following matrix orthogonal:

$$A = \begin{pmatrix} 0.96 & -0.28 \\ 0.28 & 0.96 \end{pmatrix}$$

In class matrices exercise

$$A = \left(\begin{array}{cc} 2 & 1\\ 0 & -2 \end{array}\right)$$

$$C = \left(\begin{array}{ccccc} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right)$$

$$B = \left(\begin{array}{rrrr} -1 & -2 & 7 \\ -2 & 2 & -1 \end{array} \right)$$

- **1.** What is A * B?
- **2.** What is B * A?
- **3.** What is B^t?
- 4. Is C orthogonal?

Matrices in python

See <u>http://wiki.scipy.org/Tentative_NumPy_Tutorial#head-</u> a9063f71090f3d1fbbdae5397ccb4e882d2cf603

Simple Array Operations

See linalg.py in numpy folder for more.

```
>>> from numpy import *
>>> from numpy.linalg import *
>>> a = array([[1.0, 2.0], [3.0, 4.0]])
>>> print a
[[ 1. 2.]
[ 3. 4.]]
>>> a.transpose()
array([[ 1., 3.],
      [ 2., 4.]])
>>> inv(a)
array([[-2., 1.],
      [1.5, -0.5]])
>>> u = eye(2) # unit 2x2 matrix; "eye" represents "I"
>>> u
array([[ 1., 0.],
      [0., 1.]])
>>> j = array([[0.0, -1.0], [1.0, 0.0]])
>>> dot (j, j) # matrix product
array([[-1., 0.],
      [0., -1.]])
>>> trace(u) # trace
2.0
>>> y = array([[5.], [7.]])
>>> solve(a, y)
array([[-3.],
      [ 4.]])
>>> eig(j)
(array([ 0.+1.j, 0.-1.j]),
array([[ 0.70710678+0.j, 0.70710678+0.j],
      [ 0.0000000-0.70710678j, 0.00000000+0.70710678j]]))
Parameters:
    square matrix
Returns
```

Latent Semantic Analysis (LSA)

This section mostly follows Manning and Schütze Chapter 15

Singular Value Decomposition (SVD)

Decompose A such that

$$\widetilde{A} = TSD^{t}$$
With $|\widetilde{A} - A|^{2}$ minimal
and
$$T^{t} \cdot T = 1$$
 $D^{t} \cdot D = 1$

A a t by d matrixT a t by n matrixS a n by n matrixD a d by n matrix

An artificial example of SVD

an SVD of

S

$$A = \begin{pmatrix} 1 & 1 & -1 & -1 \\ -1 & -1 & 1 & 1 \end{pmatrix}$$

More realistic Example (from Manning and Schütze)

Decompose

		d_1	d_2	d_3	d_4	d_5	d_6
A =	cosmonaut	1	0	1	0	0	0
	astronaut	0	1	0	0	0	0
	moon	1	1	0	0	0	0
	car	1	0	0	1	1	0)

More realistic Example (from Manning and Schütze)

	(d_1	d_2	d_3	d_4	d_5	d_6
	Dimension 1	-0.75	-0.28	-0.20	-0.45	-0.33	-0.12
t D	Dimension 2	-0.29	-0.53	-0.19	0.63	0.22	0.41
D =	Dimension 3	0.28	-0.75	0.45	-0.20	0.12	-0.33
	Dimension 4	0.00	0.00	0.58	0.00	-0.58	0.58
	\Dimension 5	-0.53	0.29	0.63	0.19	0.41	-0.22/

	(cosm.	astr.	moon	car	truck
	Dimension 1	-0.44	-0.13	-0.48	-0.70	-0.26
T^{t}	Dimension 2	-0.30	-0.33	-0.51	0.35	0.65
1 =	Dimension 3	0.57	-0.59	-0.37	0.15	-0.41
	Dimension 4	0.58	0.00	0.00	-0.58	0.58
	\Dimension 5	0.25	0.73	-0.61	0.16	-0.09/

More realistic Example (from Manning and Schütze)

2.160.000.000.000.000.001.59 0.000.000.001.280.000.000.000.000.000.001.000.000.000.390.000.000.000.00

Document-Document Similarity

Rewrite A

$$A = \begin{pmatrix} \Box & \Box & \Box \\ d_1 & d_2 & \dots & d_d \end{pmatrix}$$

with d_j a vector

with word frequencies of the j-th document

Similarity of i-th document with j-th document $\frac{1}{6}$

$$d_i^t d_j^t$$

All document-document similarities $A^t A$

Document-Document Similarity

Rewrite
$$\widetilde{A}^{t}\widetilde{A} =$$

 $= (TSD^{t})^{t}TSD^{t}$
 $= DS^{t}T^{t}TSD^{t}$
 $= DS^{t}SD^{t}$
 $= (SD^{t})^{t}SD^{t}$

Measure similarity in subspace defing \mathbf{D}^{t} by

More realistic example (from Manning and Schütze)

Result for Ω^t		d_1	d_2	d_3	d_4	d_5	d_6
SD	Dimension 1	-1.62	-0.60	-0.04	-0.97	-0.71	-0.26
	Dimension 2	-0.46	-0.84	-0.30	1.00	0.35	0.65

More realistic example (from Manning and Schütze)

Decompose A such that

	d_1	d_2	d_3	d_4	d_5	d_6
d_1	1.00					
d_2	0.78	1.00				
d_3	0.40	0.88	1.00			
d_4	0.47	-0.18	-0.62	1.00		
d_5	0.74	0.16	-0.32	0.94	1.00	
d_6	0.10	-0.54	-0.87	0.93	0.74	1.00

An even more realistic example

An even more realistic example document-document similarity

Representation for documents in 2 dimensional subspace

27

Term-term similarity

Rewrite
$$\widetilde{A}\widetilde{A}^{t} =$$

 $= (TSD^{t})(TSD^{t})^{t}$
 $= TSD^{t}DS^{t}T^{t}$
 $= (TS)(TS)^{t}$

Measure similarity in subspace define $\ensuremath{\sc pr} S$ by

Homework

Implement SVD.

Details in exercise 9.

- •LSA consistently improves recall on standard test collections (precision/recall generally improved)
- •Variable performance on larger TREC collections
- •Dimensionality of latent space a magic number – 300 – 1000 seems to work fine
- no satisfactory way of assessing value.
- Computational cost high

Application (by Landauer et al.)

How Well Can Passage Meaning be Derived without Using Word Order? A Comparison of Latent Semantic Analysis and Humans

Thomas K. Landauer, Darrell Laham, Bob Rehder, and M. E. Schreiner Department of Psychology & Institute of Cognitive Science University of Colorado, Boulder Boulder, CO 80309-0345 {landauer, dlaham, rehder, missy}@psych.colorado.edu

Rate essay by similarity to existing
ones
Measure correlation with human
rating

Correlation between	
All Essays $(n = 273)$	
Two reader scores:	.65
LSA score and average reader score:	.64
Attachment in children $(n = 55)$	
Two reader scores:	.19
LSA score and average reader score:	.61
Aphasias $(n = 109)$	
Two reader scores:	.75
LSA score and average reader score:	.60
Operant conditioning $(n = 109)$	
Two reader scores:	.68
LSA score and average reader score:	.71

Table 2: Psychology essay results.

Conclusion: drop the right key-words in an exam and you are set