Computational Linguistics Latent Spaces and Matrix Factorization

Clayton Greenberg \& Stefan Thater

FR 4.7 Allgemeine Linguistik (Computerlinguistik) Universität des Saarlandes
Summer 2016

Goal

Goal:

treat document clustering and word clustering on the same footing (same semantic space)
find low dimensional representations

The word document matrix

Clustering

Document clustering

describe each document by a vector containing the frequencies of the words

Word clustering

describe each word by a vector containing the frequencies of its occurrence in different documents

Joint word and document clustering

The word document matrix:
Enter frequency (or tf-idf) for each word and document in a rectangular scheme of numbers (matrix)

Matrices

Matrices

A matrix is an array with two indices
e.g. in a python program this could be A [i] [j] with $i=1 . . N$ and $j=1$... M

When writing, often a subscript notation is used

$$
a_{i, j}
$$

or a square scheme: $\quad A=\left(\begin{array}{ccc}a_{1,1} & \ldots & a_{1, M} \\ \ldots & a_{i, j} & \ldots \\ a_{N, 1} & \ldots & a_{N, M}\end{array}\right)$
Specific example of a 2×3 matrix

$$
A=\left(\begin{array}{ccc}
2 & -5 & 0.5 \\
-2 & 0.1 & -8
\end{array}\right)
$$

The transpose of a matrix

The two indices are swapped
e.g. in a python program this could be At [j] [i]=A[i][j] for $i=1 . . N$ and $j=1$...

M
for the general matrix on the previous slide we have: $\quad A^{t}=\left(\begin{array}{ccc}a_{1,1} & \ldots & a_{1, N} \\ \ldots & a_{j, i} & \ldots \\ a_{M, 1} & \ldots & a_{M, N}\end{array}\right)$

Specific example of a 2×3 matrix

$$
A=\left(\begin{array}{ccc}
2 & -5 & 0.5 \\
-2 & 0.1 & -8
\end{array}\right)
$$

What is A^{t}

Product of two matrices

The elements of a product matrix can be calculated in a python program by

```
for i in range(1,N+1):
for j in range(1,M+1):
for k in range(1,K+1):
C[i][j] += A[i][k]*B[k][j]
```

In math notation

$$
C=A \cdot B
$$

with

$$
c_{i, j}=\sum_{k=1}^{K} a_{i, k} b_{k, j}
$$

Unit matrix

Unit matrix: the element are the indicator function

$$
a_{i, j}=\delta_{i, j}
$$

Example:

$$
A=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Often the unit matrix is denoted by a 1

Orthogonal matrices

a matrix A is orthogonal if

$$
1=A^{t} \cdot A
$$

Is the following matrix orthogonal:

$$
A=\left(\begin{array}{cc}
0.96 & -0.28 \\
0.28 & 0.96
\end{array}\right)
$$

In class matrices exercise

$$
A=\left(\begin{array}{cc}
2 & 1 \\
0 & -2
\end{array}\right) \quad B=\left(\begin{array}{ccc}
-1 & -2 & 7 \\
-2 & 2 & -1
\end{array}\right)
$$

$$
C=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

1. What is $\mathrm{A}^{*} \mathrm{~B}$?
2. What is $B^{*} A$?
3. What is B^{t} ?
4. Is C orthogonal?

Matrices in python

See http://wiki.scipy.org/Tentative NumPy Tutorial\#heada9063f71090f3d1fbbdae5397ccb4e882d2cf603

Simple Array Operations

See linalg.py in numpy folder for more.

》> from numpy import *
>> from numpy.linalg import *
$\ggg a=\operatorname{array}([[1.0,2.0],[3.0,4.0]])$
>> print a
[$\left[\begin{array}{lll}1 . & 2 .\end{array}\right]$
$\left[\begin{array}{ll}{[3 .} & 4 .\end{array}\right]$
>>> a.transpose()
array ([[1., 3.],
[2., 4.]])
\ggg inv(a)
array $\left(\left[\begin{array}{ll}-2 . & \text {, } 1 .] \text {, }\end{array}\right.\right.$
[$1.5,-0.5]])$
>>> $u=$ eye (2) \# unit 2×2 matrix; "eye" represents " $I^{\text {" }}$
>>> u
array ([[$1 ., 0$.$] ,$
[0., 1.]])
$\ggg j=\operatorname{array}([[0.0,-1.0],[1.0,0.0]])$
$\ggg \operatorname{dot}(j, j)$ \# matrix product
array ([[$-1 ., 0$.$] ,$
[0., -1.]])
>> trace (u) \# trace
2.0
>>> $\mathrm{Y}=\operatorname{array}([[5],.[7]]$.
\ggg solve (a, y)
array $\left(\left[\begin{array}{l}-3 .]\end{array}\right.\right.$,
[4.]])
>> eig(j)
(array ([0.+1.j, 0.-1.j]),
array ([[0.70710678+0.j, 0.70710678+0.j],
[0.00000000-0.70710678j, 0.00000000+0.70710678j]]))
Parameters:
square matrix

Latent Semantic Analysis (LSA)

This section mostly follows Manning and Schütze
Chapter 15

Singular Value Decomposition (SVD)

Decompose A such that

$$
\widetilde{A}=T S D^{t}
$$

With $|\tilde{A}-A|^{2} \quad$ minimal
and

$$
T^{t} \cdot T=1 \quad D^{t} \cdot D=1
$$

A at by dmatrix $\quad T$ at by n matrix
S anby n matrix $\quad D$ adby n matrix

An artificial example of SVD

Is

$$
T=\binom{\frac{1}{\sqrt{2}}}{-\frac{1}{\sqrt{2}}}
$$

an SVD of

$$
S=(2 \sqrt{2}) \quad D=\left(\begin{array}{c}
\frac{1}{2} \\
\frac{1}{2} \\
-\frac{1}{2} \\
-\frac{1}{2}
\end{array}\right)
$$

$$
A=\left(\begin{array}{cccc}
1 & 1 & -1 & -1 \\
-1 & -1 & 1 & 1
\end{array}\right)
$$

More realistic Example

(from Manning and Schütze)

Decompose

$$
A=\left(\begin{array}{l|llllll}
& d_{1} & d_{2} & d_{3} & d_{4} & d_{5} & d_{6} \\
\hline \text { cosmonaut } & 1 & 0 & 1 & 0 & 0 & 0 \\
\text { astronaut } & 0 & 1 & 0 & 0 & 0 & 0 \\
\text { moon } & 1 & 1 & 0 & 0 & 0 & 0 \\
\text { car } & 1 & 0 & 0 & 1 & 1 & 0
\end{array}\right)
$$

More realistic Example

 (from Manning and Schütze)$\mathrm{t}=\left(\begin{array}{l|rrrrrr} & d_{1} & d_{2} & d_{3} & d_{4} & d_{5} & d_{6} \\ \hline \text { Dimension 1 } & -0.75 & -0.28 & -0.20 & -0.45 & -0.33 & -0.12 \\ \text { Dimension 2 } & -0.29 & -0.53 & -0.19 & 0.63 & 0.22 & 0.41 \\ \text { Dimension 3 } & 0.28 & -0.75 & 0.45 & -0.20 & 0.12 & -0.33 \\ \text { Dimension 4 } & 0.00 & 0.00 & 0.58 & 0.00 & -0.58 & 0.58 \\ \text { Dimension 5 } & -0.53 & 0.29 & 0.63 & 0.19 & 0.41 & -0.22\end{array}\right)$
$T^{\mathrm{t}}=\left(\begin{array}{l|rrrrr} & \text { cosm. } & \text { astr. } & \text { moon } & \text { car } & \text { truck } \\ \hline \text { Dimension 1 } & -0.44 & -0.13 & -0.48 & -0.70 & -0.26 \\ \text { Dimension 2 } & -0.30 & -0.33 & -0.51 & 0.35 & 0.65 \\ \text { Dimension 3 } & 0.57 & -0.59 & -0.37 & 0.15 & -0.41 \\ \text { Dimension 4 } & 0.58 & 0.00 & 0.00 & -0.58 & 0.58 \\ \text { Dimension 5 } & 0.25 & 0.73 & -0.61 & 0.16 & -0.09\end{array}\right)$

More realistic Example
(from Manning and Schütze)

$$
S=\left(\begin{array}{lllll}
2.16 & 0.00 & 0.00 & 0.00 & 0.00 \\
0.00 & 1.59 & 0.00 & 0.00 & 0.00 \\
0.00 & 0.00 & 1.28 & 0.00 & 0.00 \\
0.00 & 0.00 & 0.00 & 1.00 & 0.00 \\
0.00 & 0.00 & 0.00 & 0.00 & 0.39
\end{array}\right)
$$

Document-Document Similarity

Rewrite A
$A=\left(\begin{array}{cccc}\dot{d}_{d} & \dot{d}_{2} & \ldots & \stackrel{\sqcup}{d} \\ \square_{d}\end{array}\right)$
with \vec{d}_{j} a vector
with word frequencies of the j -th document

Similarity of i-th document with j -th document $\stackrel{\rightharpoonup}{d}_{i} \stackrel{山_{d}}{j}$
All document-document similarities $A^{t} A$

Document-Document Similarity

$$
\begin{aligned}
\text { Rewrite } & \widetilde{A}^{t} \widetilde{A}= \\
& =\left(T S D^{t}\right)^{t} T S D^{t} \\
& =D S^{t} T^{t} T S D^{t} \\
& =D S^{t} S D^{t} \\
& =\left(S D^{t}\right)^{t} S D^{t}
\end{aligned}
$$

Measure similarity in subspace defin $\oiint \Phi^{t}$
by

More realistic example (from Manning and Schütze)

Result for $S D^{t}$		d_{1}	d_{2}	d_{3}	d_{4}	d_{5}	d_{6}
	Dimension 1	-1.62	-0.60	-0.04	-0.97	-0.71	-0.26
	Dimension 2	-0.46	-0.84	-0.30	1.00	0.35	0.65

More realistic example (from Manning and Schütze)

Decompose A such that

	d_{1}	d_{2}	d_{3}	d_{4}	d_{5}	d_{6}
d_{1}	1.00					
d_{2}	0.78	1.00				
d_{3}	0.40	0.88	1.00			
d_{4}	0.47	-0.18	-0.62	1.00		
d_{5}	0.74	0.16	-0.32	0.94	1.00	
d_{6}	0.10	-0.54	-0.87	0.93	0.74	1.00

An even more realistic example

An even more realistic example

 document-document similarity

Representation for documents in 2 dimensional subspace

Term-term similarity

$$
\begin{aligned}
\text { Rewrite } & \tilde{A} \tilde{A}^{t}= \\
& =\left(T S D^{t}\right)\left(T S D^{t}\right)^{t} \\
& =T S D^{t} D S^{t} T^{t} \\
& =T S^{t} S T^{t} \\
& =(T S)(T S)^{t}
\end{aligned}
$$

Measure similarity in subspace defined'S by

Homework

Implement SVD.
Details in exercise 9.

LSA performance

-LSA consistently improves recall on standard test collections (precision/recall generally improved)

- Variable performance on larger TREC collections
-Dimensionality of latent space - a magic number - 300-1000 seems to work fine - no satisfactory way of assessing value. -Computational cost high

Application (by Landauer et al.)

How Well Can Passage Meaning be Derived without Using Word Order? A Comparison of Latent Semantic Analysis and Humans

Thomas K. Landauer, Darrell Laham, Bob Rehder, and M. E. Schreiner Department of Psychology \& Institute of Cognitive Science University of Colorado, Boul
\{landauer, dlaham, rehder, missy\}@psych.colorado.edu

Rate essay by similarity to existing ones
Measure correlation with human rating
Correlation between
All Essays ($\mathrm{n}=273$)
Two reader scores: 65
LSA score and average reader score: 64
Attachment in children $(\mathrm{n}=55)$
Two reader scores: 19
LSA score and average reader score: 61
Aphasias ($\mathrm{n}=109$)
Two reader scores: 75
LSA score and average reader score: 60
Operant conditioning ($\mathrm{n}=109$)
Two reader scores 68
LSA score and average reader score: 71

Table 2: Psychology essay results.

Conclusion: drop the right key-words in an exam

