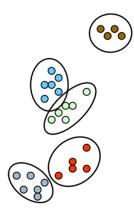
Computational Linguistics Clustering


Clayton Greenberg and Stefan Thater

Department of Computational Linguistics, Saarland University

23 June 2016

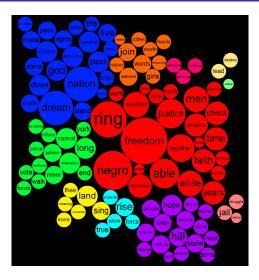
Cluster analysis

Goal:

- group similar items together
- pre-existing labels are not assumed

Steps:

- define distance between points in the sample
- 2 define a loss function
- ind an algorithm that minimizes the loss function


Outline

1 Clustering examples

- 2 Unsupervised learning
- 3 Distance measures
- 4 K-means clustering
- 5 The Variance Ratio Criterion
- 6 Other clustering algorithms
- Application to Named Entity Tagging

Clustering examples

Cluster Word (speech "I have a dream")

http://neoformix.com/2011/wcd_KingIHaveADream.png

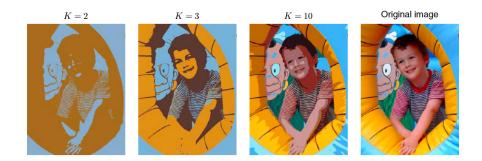
C. Greenberg and S. Thater (UdS CoLi)

Cluster Text (e.g. search results)

Searches related to cluster

- cluster meaning cluster server
- cluster band cluster computing
- cluster sampling cluster analysis
- cluster headaches cluster database

Clustering examples

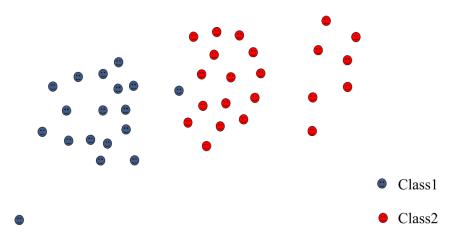

Cluster Image Regions: Image Segmentation

http://cs.brown.edu/~pff/segment/

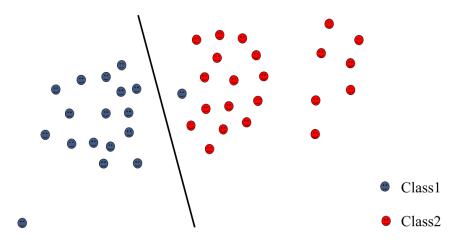
Cluster Image Regions

Bishop, PRML

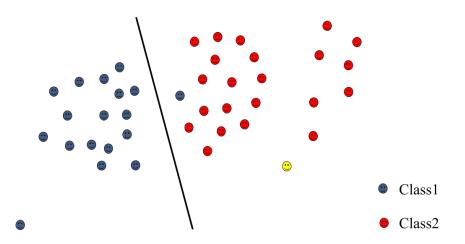
Outline

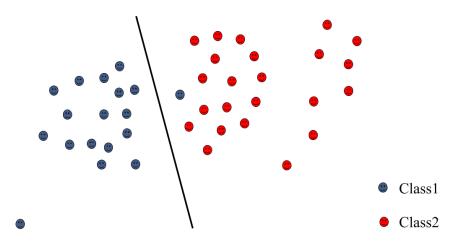

Clustering examples

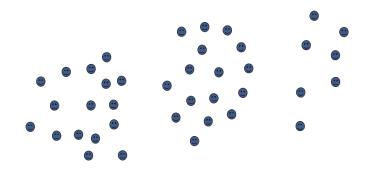
2 Unsupervised learning

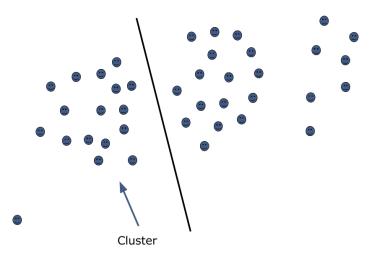

- 3 Distance measures
- 4 K-means clustering
- 5 The Variance Ratio Criterion
- 6 Other clustering algorithms

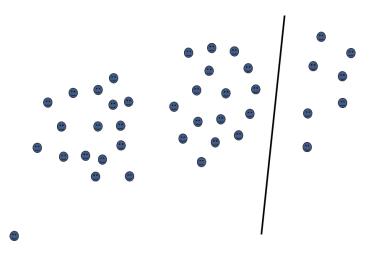
Application to Named Entity Tagging

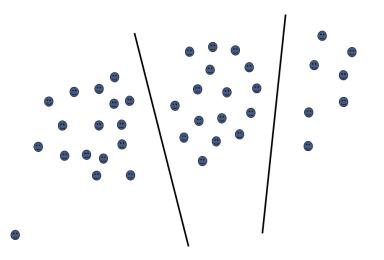

Supervised classification: labels known

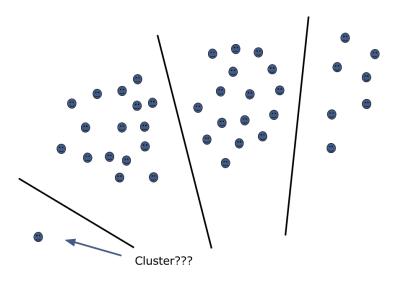

Your classifier determines a boundary


An unseen case


Successfully classified

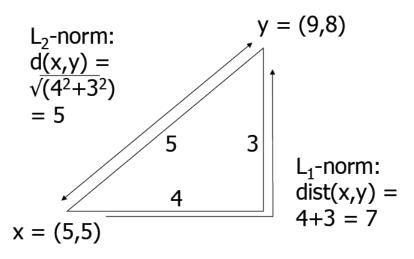

Clustering: No labels!


One possible boundary


Another possible boundary

Any number of clusters possible

Should we have a cluster for this point?



Outline

Clustering examples

- 2 Unsupervised learning
- 3 Distance measures
- 4 K-means clustering
- 5 The Variance Ratio Criterion
- 6 Other clustering algorithms
- Application to Named Entity Tagging

Euclidean distances

Axioms of a distance measure

d is a *distance measure* if it is a function from pairs of points to the real numbers such that:

$$d(x,y) \ge 0$$
 (4
 $d(x,y) = 0$ if and only if $x = y$ (4
 $d(x,y) = d(y,x)$ (4
 $d(x,y) \le d(x,z) + d(z,y)$ (4)

(nonnegativity) (identity of indiscernables) (symmetry) (triangle inequality)

Distance measures

L₁ distance (Manhattan distance)

$$d_1(\vec{x},\vec{y}) = \sum_{k=1}^K |x_k - y_k|$$

L₂ distance (Euclidean distance)

$$d_2(\vec{x}, \vec{y}) = \sqrt{\sum_{k=1}^{K} |x_k - y_k|^2}$$

 r^2 distance (Euclidean squared distance)

$$r^{2}(\vec{x},\vec{y}) = \sum_{k=1}^{K} |x_{k} - y_{k}|^{2}$$

 L_{∞} distance (maximum distance)

$$d_{\infty}(\vec{x},\vec{y}) = \max_{k}(|x_{k}-y_{k}|)$$

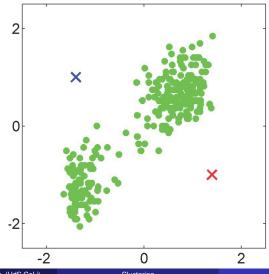
Calculate the distance between
$$\vec{x} = \begin{pmatrix} 3 \\ -1 \\ 0 \\ 3 \end{pmatrix}$$
 and $\vec{y} = \begin{pmatrix} 1 \\ 2 \\ 2 \\ 1 \end{pmatrix}$

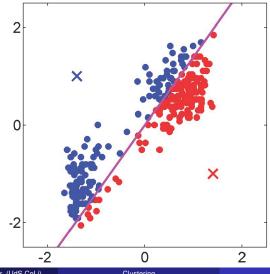
Use all four distance measures introduced on the previous slide.

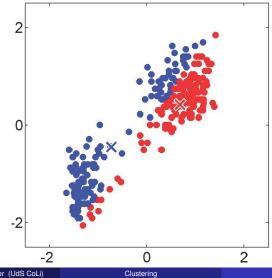
Other distance measures

- Cosine*
- Edit distance
- Jaccard
- Kernels

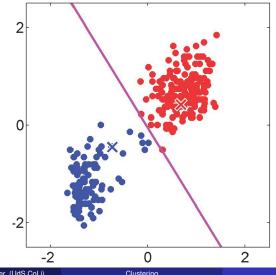
Outline

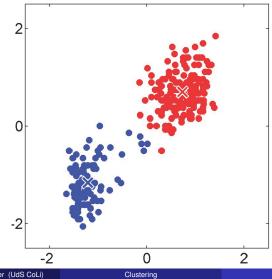

Clustering examples


- 2 Unsupervised learning
- 3 Distance measures
- 4 K-means clustering
- 5 The Variance Ratio Criterion
- 6 Other clustering algorithms

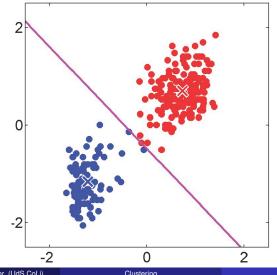

Application to Named Entity Tagging

The K-means algorithm

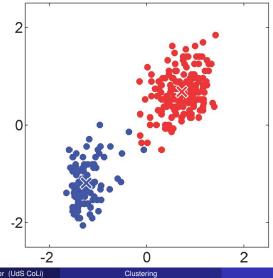

- 1 For each cluster, decide on a mean.
- 2 Assign each data point to the nearest mean.
- 3 Recalculate means according to assignments.
- If some mean has changed, go back to step 2

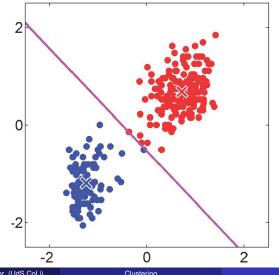


C. Greenberg and S. Thater (UdS CoLi)

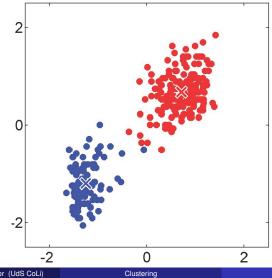


23 June 2016 29 / 57


C. Greenberg and S. Thater (UdS CoLi)



C. Greenberg and S. Thater (UdS CoLi)


C. Greenberg and S. Thater (UdS CoLi)

23 June 2016 33 / 57

C. Greenberg and S. Thater (UdS CoLi)

Assigning points to clusters

$$r_{n,k} = \begin{cases} 1 & \text{if } k = \underset{j}{\operatorname{argmin}} d(\vec{x_n}, \vec{\mu_j}) \\ 0 & \text{otherwise} \end{cases}$$

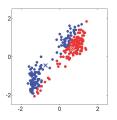
 $\vec{x_n} : n^{\text{th}}$ training sample (vector) $\vec{\mu_j} :$ mean of the j^{th} cluster $d(\vec{x_n}, \vec{\mu_j}) :$ distance (your choice, e.g. L_2)

Example

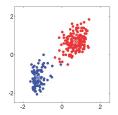
$$r_{n,k} = \begin{cases} 1 & \text{if } k = \underset{j}{\operatorname{argmin}} d(\vec{x}_n, \vec{\mu}_j) \\ 0 & \text{otherwise} \end{cases}$$

See white board

Į

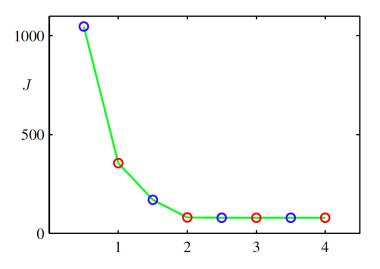

Update mean

$$\vec{u}_k = \frac{\sum\limits_{n=1}^{N} r_{n,k} \vec{x}_n}{\sum\limits_{n=1}^{N} r_{n,k}}$$


Interpret the denominator

Loss function: distortion measure

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{n,k} d(\vec{x}_{n}, \vec{\mu_{k}})$$



Which of these has the smaller J?

K-means clustering

Distortion function after each iteration

How to initialize K-means

- Converges to local optimum
- Outcome of clustering depends on initialization
- Heuristic: pick K vectors from training data being farthest apart

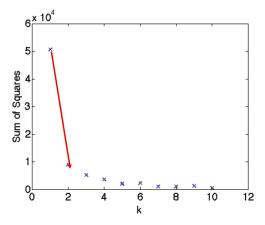
Outline

Clustering examples

- 2 Unsupervised learning
- 3 Distance measures
- 4 K-means clustering
- **5** The Variance Ratio Criterion
- 6 Other clustering algorithms

Application to Named Entity Tagging

The Variance Ratio Criterion


Determining K from the distortion

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{n,k} d(\vec{x}_{n}, \vec{\mu}_{k})$$

What about picking K such that J becomes as small as possible?

How to determine K

- For K = N, the distortion J = 0
- Solution: find a "corner"

Sums of squares

• Assume $d = r^2$ and (only for the next line) K = 1.

• Then,
$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{n,k} d(\vec{x}_n, \vec{\mu}_k) = \sum_{n=1}^{N} r^2(\vec{x}_n, \vec{\mu}_G) = SS_{\text{Total}}$$

- $\vec{\mu_G}$ is called the grand mean
- We can decompose $SS_{Total} = SS_{Between} + SS_{Within}$, where

$$SS_{Between} = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{n,k} d(\vec{\mu_k}, \vec{\mu_G})$$

$$SS_{\text{Within}} = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{n,k} d(\vec{x}_n, \vec{\mu}_k)$$

The Variance Ratio Criterion

The Variance Ratio Criterion (VRC)

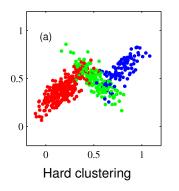
1 Compute VRC_k for eack k

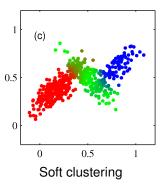
$$VRC_k = \frac{SS_{\text{Between}}}{k-1} / \frac{SS_{\text{Within}}}{n-k}$$

2

$$\hat{k} = \underset{k}{\operatorname{argmin}} [(VRC_{k+1} - VRC_k) - (VRC_k - VRC_{k-1})]$$

Outline


Clustering examples


- 2 Unsupervised learning
- 3 Distance measures
- 4 K-means clustering
- 5 The Variance Ratio Criterion
- 6 Other clustering algorithms

Application to Named Entity Tagging

Soft clustering (e.g. Expectation-Maximization)


No strict assignment to a cluster Just probabilities

Hierarchical clustering (Brown Algorithm)

Organize clusters in a hierarchy

The Exchange Algorithm

g_w : calls of word w

sta	start with some initial mapping $w \to g_w$				
	for each word w of the vocabulary do				
	for each class k do				
		tentatively exchange word w from class g_w to class k and update counts			
		compute perplexity for this tentative exchange			
		exchange word w from class g_w to class k with minimum perplexity			
do until stopping criterion is met					

Outline

Clustering examples

- 2 Unsupervised learning
- 3 Distance measures
- 4 K-means clustering
- 5 The Variance Ratio Criterion
- 6 Other clustering algorithms

Possible features of words

- Frequency
- TF-IDF
- Stop wording?
- Stemming?

- Cluster words together that have similar neighbors
- Minimize perplexity on training test

Example clustering

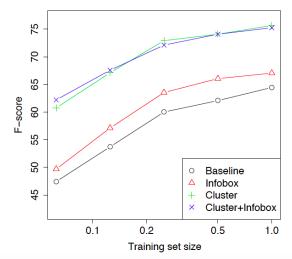
Example members
Groß, Rau, Muller, Zimmermann, Frei, Becker, Schmidt
Düsseldorf, Berlin, München, Köln, Stuttgart, Hannover
nahmen, macht, zeigt, gleichen, bringt, biete, machte, enthält

Class labels as features (1/2)

Training

Word	Class label	Tag
Düsseldorf	C2	City
is	Х	0
the	Х	0
capital	Х	0
of	Х	0
NRW	Х	0

Class labels as features (2/2)


Testing

Word	Class label	Tag
The	Х	0
Hofbräuhaus	Х	0
is	Х	0
in	Х	0
Munich	C2	???

How to tag if Munich is not in the training data?

Results

Summary of topics

- 1 Clustering examples
- 2 Unsupervised learning
- 3 Distance measures
 - 4 K-means clustering
- 5 The Variance Ratio Criterion
- 6 Other clustering algorithms
- Application to Named Entity Tagging