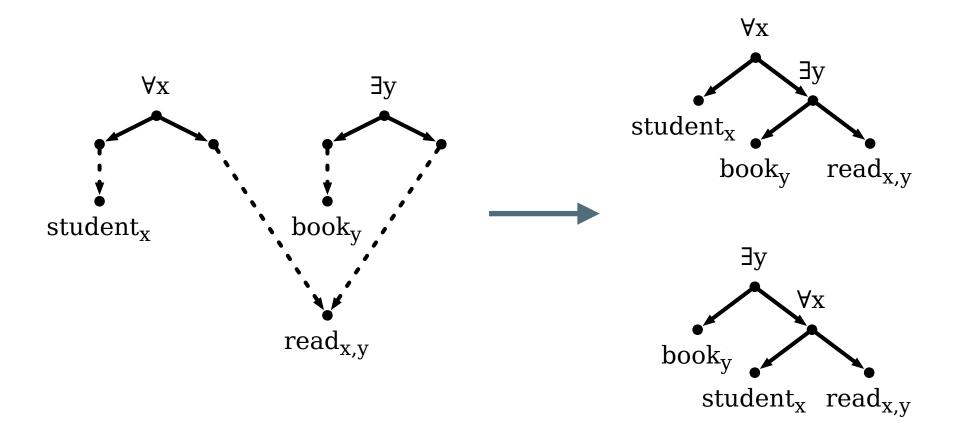
Computational Linguistics Algorithms for Scope Underspecification

Clayton Greenberg Stefan Thater

FR 4.7 Allgemeine Linguistik (Computerlinguistik)
Universität des Saarlandes
Summer 2016

What this lecture is about



Overview

- Some basic assumptions about sentence meaning
- Scope ambiguities
- Modelling scope ambiguities with dominance graphs
- An algorithm for solving dominance graphs

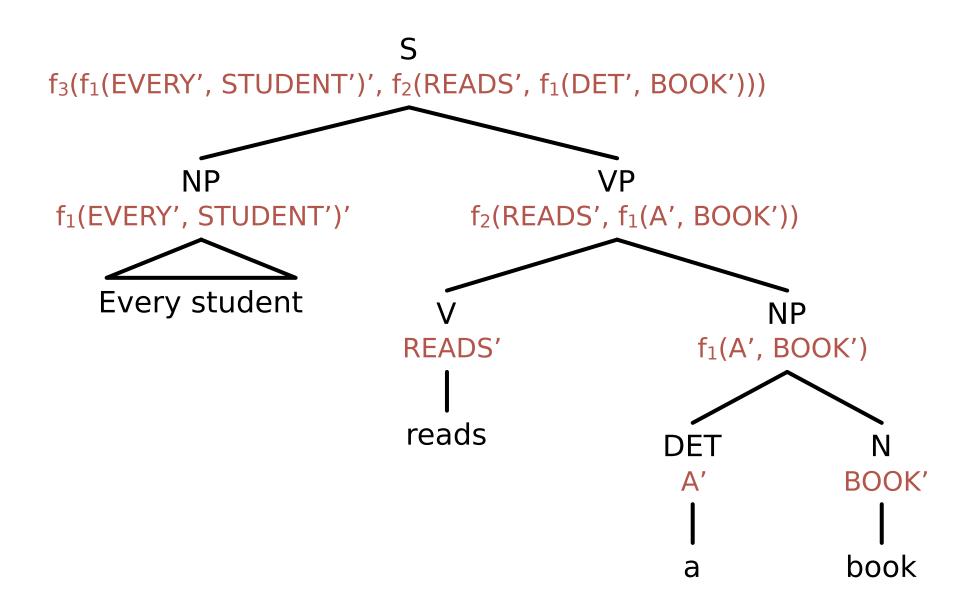
Sentence meaning - Assumptions

- Truth-functional interpretation: The meaning of a declarative sentence is given by its truth conditions
- ⇒ we can represent the meaning of natural language sentences by logical formula that "capture" the truthconditions of the original sentence.
- Every student works $\mapsto \forall x (student'(x) \rightarrow work'(x))$

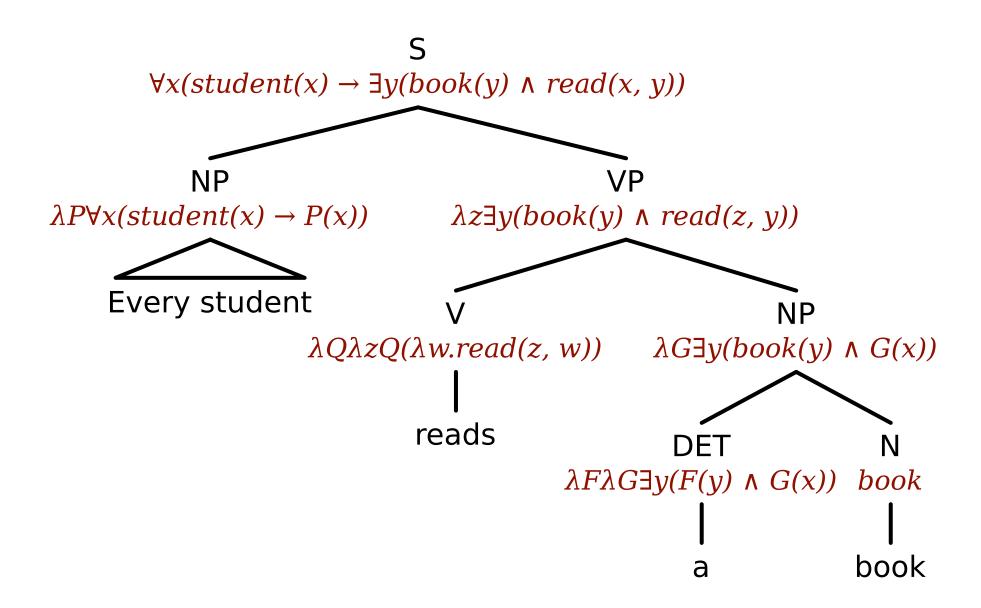
Sentence meaning - Assumptions

- Compositionality: The meaning of a complex expression is a function of the meanings of its parts and of the syntactic rules by which they are combined
- Compositional semantic construction based on the syntactic tree of the natural language expression
 - The semantic lexicon assigns meaning representations to lexical (leaf) nodes of the syntax tree.
 - The semantic representation of an inner node is computed by combining the representations of its child nodes.

Compositional Semantics Construction



Compositional Semantics Construction



Compositional Semantics Construction

- Compositionality: The meaning of a complex expression is a function of the meanings of its parts and of the syntactic rules by which they are combined
- ⇒ Every syntax tree is mapped to a unique semantic representation

Ambiguities

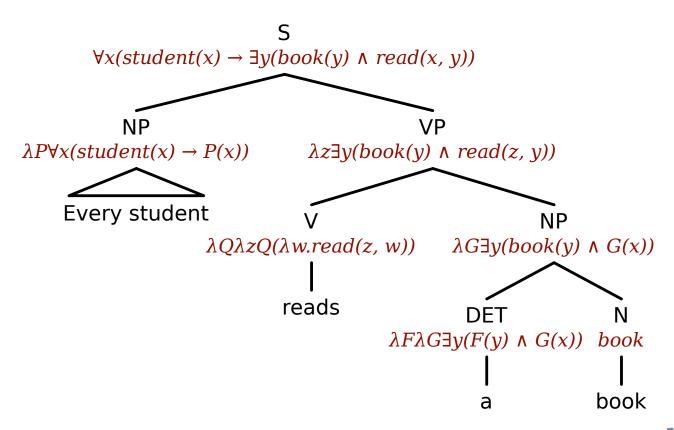
- Natural language is ambiguous: a sentence can have more than one interpretation ("reading").
- Lexical ambiguities
 - Iraqi head seeks arms
- Structural ambiguities
 - Enraged cow injures farmer with axe
 - The salesman sold the dog biscuits
 - Every student reads a book

Scope Ambiguities

- Scope ambiguities can arise when a sentence contains two or more quantifiers and/or other scope-taking operators (negations, modal expressions, etc.)
- Every student reads a book
 - $\forall x(student'(x) \rightarrow \exists y(book'(y) \land read'(x, y)))[\forall \exists]$
 - $\exists y (book'(y) \land \forall x (student'(x) \rightarrow read'(x, y)))[\exists \forall]$

Scope Ambiguities - Problem #1

- The approach outlined before will give us just one reading (the "surface scope reading")
- Problem: How to compute the ∃∀ reading?

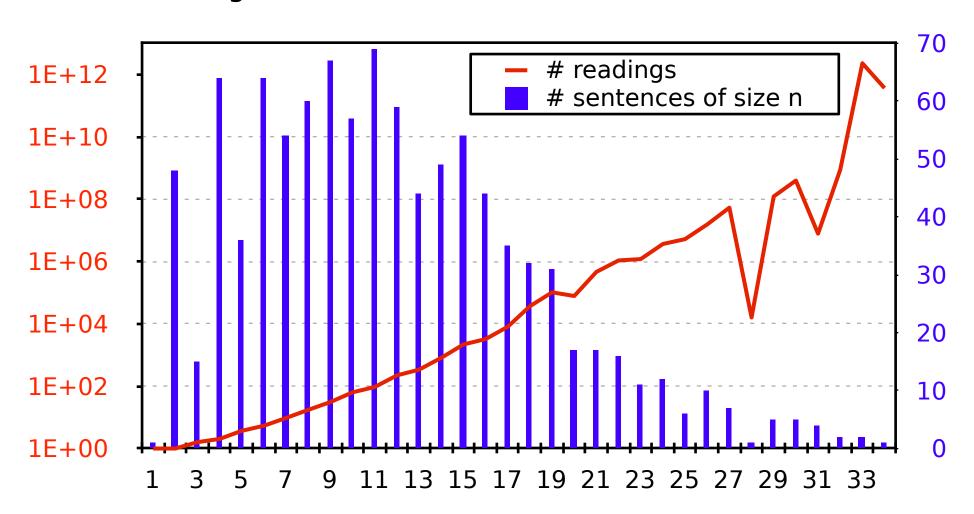


Scope Ambiguities – Problem #2

- Combinatorial explosion of readings: The number of readings of a sentence can grow exponentially in the number of scope-taking operators it contains.
- Every student reads a book ⇒ 2 readings
- Every student reads a book about an interesting topic
 ⇒ 5 readings (some of which are logically equivalent)
- We quickly put up the tents in the lee of a small hillside and cook for the first time in the open
 - ⇒ 480 readings* (most of which are logically equivalent)

Scope Ambiguities - Problem #2

 Number of readings in a "real-live" corpus according to the English Resource Grammar (Koller &al., ACL 2008)

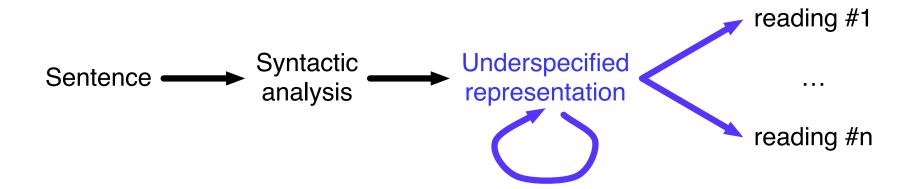


Coping with scope - Options

- (1) Ignore scope ambiguities
 - for instance, always compute the "surface scope" reading
- (2) Enumerate all readings and then select the "right" one
 - we need more complex semantics construction rules and a method to choose the "right" reading
 - computationally very expensive, since sentences can easily have millions of readings
- (3) Use scope underspecification

Scope Underspecification

- Don't explicity enumerate readings
- Instead, represent all readings of a sentence by a single compact underspecifed representation (USR).
- The individual readings can be enumerated from the underspecified representation if needed (this lecture).
- We can perform inferences directly on the level of underspecified representations (next lecture).

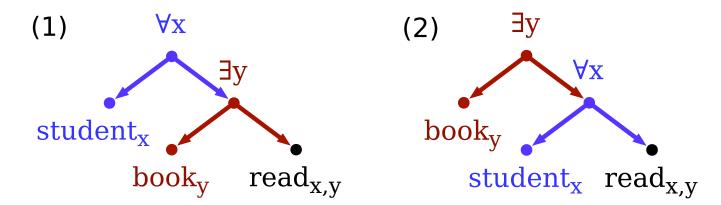


A notational change

- Every student reads a book
 - \forall x(\text{student(x), } \forall y(\text{book(y), read(x, y))})
 - \blacksquare $\exists y (book(y), \forall x (student(x), read(x, y)))$
- Abbreviations:
 - $\forall x(X, Y)$ abbreviates $\forall x(X \rightarrow Y)$
 - \blacksquare $\exists x(X, Y)$ abbreviates $\exists x(X \land Y)$

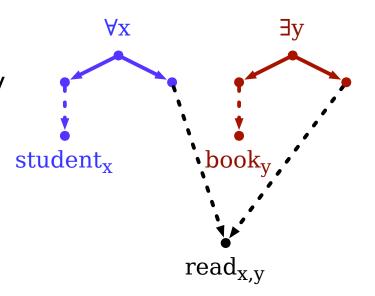
Readings = Trees

- Every student reads a book
 - (1) $\forall x(student(x), \exists y(book(y), read(x, y)))$
 - (2) $\exists y (book(y), \forall x (student(x), read(x, y)))$
- Represent readings as trees:



Dominance Graphs (informal)

- Dominance graphs consist of
 - "tree fragments" connected by
 - dominance edges
- Tree fragments (solid lines) specify the "semantic material" that is common to all readings



- Dominance edges (dotted lines) specify constraints: The upper node must dominate the lower one.
- Subclass of "normal" dominance graphs: dominance edges always go from leaves ("holes") to roots.

Normal Dominance Graphs

- A normal dominance graph is a graph $G = (V, E \uplus D)$ such that
 - the subgraph (V, E) is a collection of node disjoint trees where the height of each tree is ≤ 1

we call the roots in (V, E) **roots** and all other nodes **holes**

every hole has at least one outgoing dominance edge.

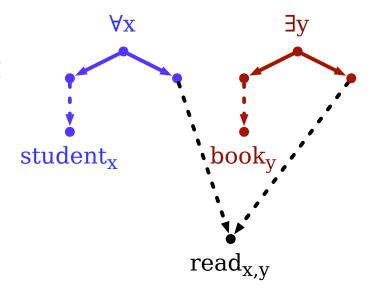
Зy

 $\forall x$

student_x

Normal Dominance Graphs

- A labelled dominance graph is a graph (V, E ⊎ D, L) such that
 - (V, E ⊎ D) is a (normal) dominance graph and
 - L is a labelling function that assigns a node v a label with arity n iff v is a root with n outgoing tree edges



Solved Forms

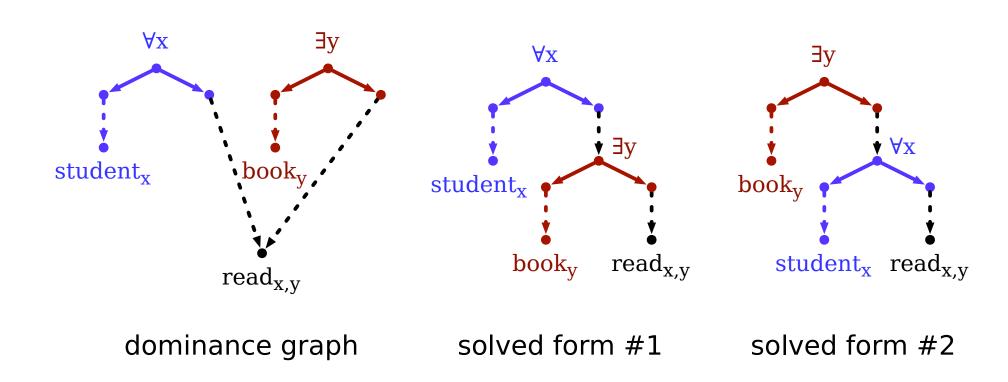
- A dominance graph G is in solved form if G is a forest
- Let G = (V, E ⊎ D) and G' = (V, E ⊎ D')

We say that G' is a solved form of G if G' is in solved form and the reachability relation of G' extends that of G

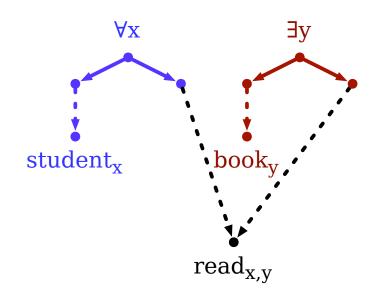
That is: whenever v_1 and v_2 are connected by some dominance edge in G', there must be a directed path from v_1 to v_2 in G.

- Note that dominance graphs and their solved forms differ only in their sets of dominance edges.
- Note also that the solved forms of connected dominance graphs are always trees.

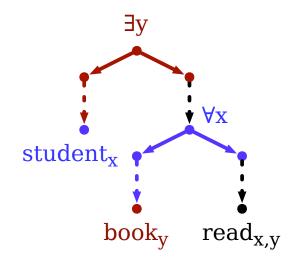
Solved Forms - Example



Not a solved form of



dominance graph G



not a solved form of G

Computational Questions

- The solvability problem:
 - Does a given dominance graph have any solved forms?
- The enumeration problem:
 - Given a dominance graph, enumerate all its (minimal) solved forms.
- We will discuss the algorithm by Bodirsky &al. (2004)
- To keep things simple, we restrict the presentation to connected dominance graphs.

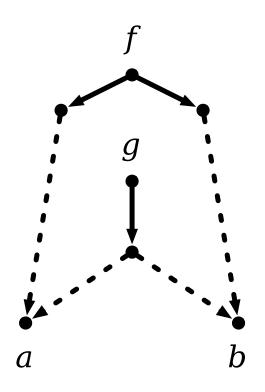
Solving dominance graphs

- The algorithm of Bodirsky &al. (2004) constructs a solved form of a dominance graph G as follows:
 - 1. nondeterministically choose a "free fragment" F from G
 - 2. remove F from G; this decomposes the graph G into weakly connected components $G_1, ..., G_k$
 - 3. recursively compute a solved form for $G_1, ..., G_k$
 - 4. attach the solved form of G_i under the corresponding hole of the free fragment F (for $1 \le i \le k$)

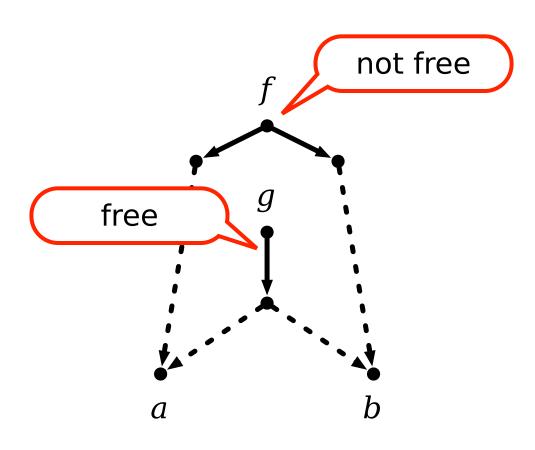
Free Fragments

- The workhorse of the algorithm is the notion of a "free fragment."
- We say that a fragment F is free in a normal dominance graph G iff
 - the root of F has no incoming dominance edges, and
 - no distinct holes of F are connected by an undirected path in the graph G' obtained from G by removing the root of F
- It can be shown that the following statements are equivalent if G is solvable (normal) dominance graph:
 - F is a free fragment in G
 - G has a solved form with top-most fragment F

Free Fragments: An Example



Free Fragments: An Example

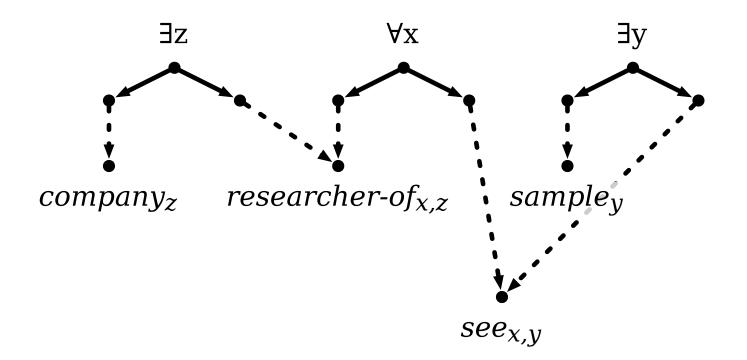


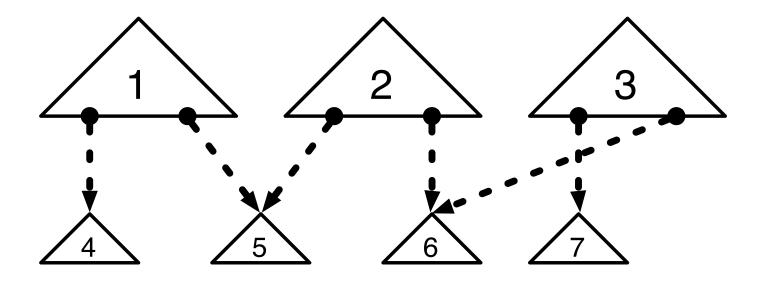
Solving dominance graphs

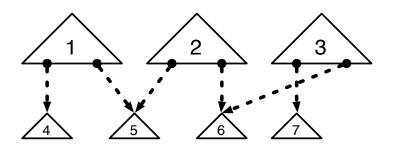
```
solve(G = (V, E ⊎ D)) = (*)
choose a free fragment F of G else fail
let G<sub>1</sub>, ..., G<sub>k</sub> be the WCCs of G\F
let ⟨V<sub>i</sub>, E<sub>i</sub> ⊎ D<sub>i</sub>⟩ = solve(G<sub>i</sub>)
return ⟨V, E ⊎ D<sub>1</sub> ⊎ ··· ⊎ D<sub>k</sub> ⊎ D'⟩
where D' are dominance edges that connect the holes of F
with the solved form of one of the corresponding G<sub>i</sub>
```

^(*) slightly simplified version, works only for connected normal dominance graphs

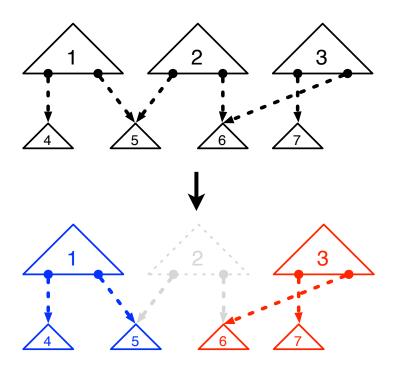
Underspecified representation for the sentence "every researcher of a company sees a sample:"



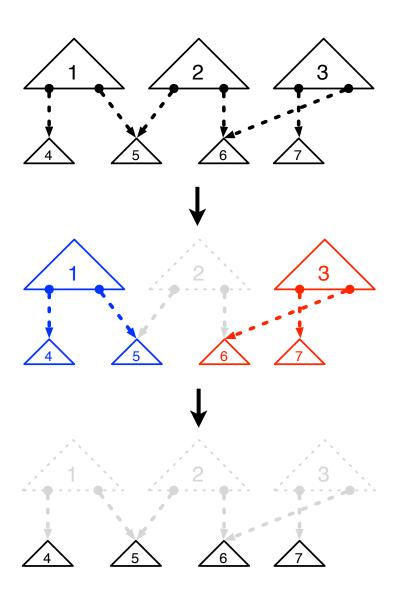




subgraph free wccs



subgraph	free	WCCS
{1,,7}	2	{1,4,5}, {3,6,7}



subgraph	free	WCCS
{1,,7}	2	{1,4,5}, {3,6,7}
{1,4,5}	1	{4}, {5}
{3,6,7}	3	{6}, {7}

The final solved form

 \blacksquare $\forall x(\exists z(comp(z), res-of(x,z)), \exists y(sample(y), see(x, y)))$



Properties of the solver

- It can be shown that the following statements are equivalent:
 - solve(G) fails for some nondeterministic choice
 - G is not solvable
 - solve(G) fails for all nondeterministic choices

Properties of the solver

- We can test whether a fragment is free in time O(n + m)
 - where n is the number of nodes and
 - m the number of edges in a dominance graph G.
- The overall running time of solve(G) is in O(n · (n + m)) per solved-form.

Literature

- Alexander Koller, Manfred Pinkal, and Stefan Thater. Scope Underspecification with Tree Descriptions: Theory and Practice [PDF]. In: Resource Adaptive Cognitive Processes. Ed. by Matthew Crocker and Jörg Siekmann. Cognitive Technologies Series. Berlin: Springer. 2009.
- Manuel Bodirsky, Denys Duchier, Joachim Niehren, and Sebastian Miele (2004). A new algorithm for normal dominance constraints [PDF]. In the proceedings of the Symposium on Discrete Algorithms (SODA04), 59-67.