Computational Linguistics Dependency-based Parsing

Clayton Greenberg Stefan Thater

FR 4.7 Allgemeine Linguistik (Computerlinguistik) Universität des Saarlandes Summer 2016

Acknowledgements

- These slides are heavily inspired by
 - an ESSLLI 2007 course by Joakim Nivre and Ryan McDonald
 - an ACL-COLING tutorial by Joakim Nivre and Sandra Kübler

Phrase-Structure Trees

Basic idea:

- Syntactic structure = lexical items linked by relations
- Syntactic structures are usually trees (... but not always)
- Relations $H \rightarrow D$
 - H is the head (or governor)
 - D is the dependent

Parsers

are easy to implement and evaluate

Dependency-based representations

- are suitable for free word order languages
- are often close to the predicate argument structure

- Some criteria for dependency relations between a head H and a dependent D in a linguistic construction C:
 - H determines the syntactic category of C; H can replace C.
 - H determines the semantic category of C; D specifies H.
 - H is obligatory; D may be optional.
 - H selects D and determines whether D is obligatory.
 - The form of D depends on H (agreement or government).
 - The linear position of D is specified with reference to H.

- Clear cases:
 - Subject, Object, …
- Less clear cases:
 - complex verb groups
 - subordinate clauses
 - coordination
 - · · · ·

Dependency Graphs

- Graph $G = \langle V, A, L, \langle \rangle$
 - V = a set of vertices (nodes)
 - A = a set of arcs (directed edges)
 - L = a set of edge labels

Dependency Trees – Notation

Dependency Graphs / Trees

- Formal conditions on dependency graphs:
 - G is weakly connected
 - G is acyclic
 - Every node in G has at most one head
 - G is projective

Projectivity

- A dependency graph G is projective iff
 - if $w_i \rightarrow w_j$, then $w_i \rightarrow^* w_k$ for all $w_i < w_k < w_j$ or $w_j < w_k < w_i$
 - if w_i is the head of w_j, then there must be a directed path from w_i to w_k, for all w_k between w_i and w_j.
- We need non-projectivity for
 - Iong distance dependencies
 - free word order

Projectivity

Projectivity

Language	Sentences	Dependencies
Arabic [Maamouri and Bies 2004]	11.2%	0.4%
Basque [Aduriz et al. 2003]	26.2%	2.9%
Czech [Hajic et al. 2001]	23.2%	1.9%
Danish [Kromann 2003]	15.6%	1.0%
Greek [Prokopidis et al. 2005]	20.3%	1.1%
Russian [Boguslavsky et al. 2000]	10.6%	0.9%
Slovenian [Dzeroski et al. 2006]	22.2%	1.9%
Turkish [Oflazer et al. 2003]	11.6%	1.5%

Dependency-based Parsing

- Grammar-based
- Data-driven
 - Transition-based
 - Graph-based

Transition-based Parsing

- Configurations (S, Q, A)
 - S = a stack of partially processed tokens (nodes)
 - Q = a queue of unprocessed input tokens
 - A = a set of dependency arcs
- Initial configuration for input w₁ ... w_n
 - $([w_0], [w_1, ..., w_n], \{\}), w_0 = ROOT$
- Terminal (accepting) configuration

Transitions ("Arc-Standard")

Left-Arc(r)

- adds a dependency arc (w_j, r, w_i) to the arc set A, where w_i is the word on top of the stack and w_j is the first word in the buffer, and pops the stack.
- Right-Arc(r)
 - adds a dependency arc (w_i, r, w_j) to the arc set A, where w_i is the word on top of the stack and w_j is the first word in the buffer, pops the stack and replaces w_j by w_i at the head of buffer.

Transitions ("Arc-Standard")

Left-Arc(r)

 $\frac{\langle [..., w_i], [w_j, ...], A \rangle}{\langle [...], [w_j, ...], A \cup \{(w_j, r, w_i)\} \rangle} \quad i \neq 0, \neg \exists k \exists l' (w_k, l', w_i) \in A$

Right-Arc(r)

 $\frac{\langle [\dots, w_i], [w_j, \dots], A \rangle}{\langle [\dots], [w_i, \dots], A \cup \{(w_i, r, w_j)\} \rangle} \quad \neg \exists k \exists l' (w_k, l', w_j) \in A$

Shift

 $\langle [\ldots], \, [w_i, \, \ldots], \, A \rangle$

 $\langle [\, \ldots, \, w_i], \, [\, \ldots\,], \, A \rangle$

Dependency graph for an English sentence from the Penn Treebank.

Deterministic Parsing

- oracle(c):
 - predicts the next transition
- parse(w₁ ... w_n):
 - $c := \langle [w_0 = ROOT], [w_1, ..., w_n], \{ \} \rangle$
 - while c is not terminal
 - t := oracle(c)
 - c := t(c)
 - return $G = \langle \{w_0, ..., w_n\}, A_c \rangle$

Deterministic Parsing

- Linear time complexity: the algorithm terminates after 2n steps for input sentences with n words.
- The algorithm is complete and correct for the class of projective dependency trees:
 - For every projective dependency tree T there is a sequence of transitions that generates T
 - Every sequence of transition steps generates a projective dependency tree
- Whether the resulting dependency tree is correct or not depends of course on the oracle.

The oracle

- Approximate the oracle by a classifier
- Represent configurations be feature vectors; for instance
 - Iexical properties (word form, lemma)
 - category (part of speech)
 - labels of partial dependency trees
 - • •

$\mathbf{f}(c_0)$	=	(root	Economic	news	NULL	NULL	NULL	NULL)
$\mathbf{f}(c_1)$	=	(Economic	news	had	NULL	NULL	NULL	NULL)
$\mathbf{f}(c_2)$	=	(ROOT	news	had	NULL	NULL	ATT	NULL)
f (c ₃)	=	(news	had	little	ATT	NULL	NULL	NULL)
f (<i>c</i> ₄)	=	(ROOT	had	little	NULL	NULL	SBJ	NULL)
f (<i>c</i> ₅)	=	(had	little	effect	SBJ	NULL	NULL	NULL)
f (<i>c</i> ₆)	=	(little	effect	on	NULL	NULL	NULL	NULL)
f (<i>c</i> ₇)	=	(had	effect	on	SBJ	NULL	ATT	NULL)
f (<i>c</i> ₈)	=	(effect	on	financial	ATT	NULL	NULL	NULL)
f (<i>c</i> ₉)	=	(on	financial	markets	NULL	NULL	NULL	NULL)
$f(c_{10})$	=	(financial	markets		NULL	NULL	NULL	NULL)
$f(c_{11})$	=	(on	markets		NULL	NULL	ATT	NULL)
$f(c_{12})$	=	(effect	on		ATT	NULL	NULL	ATT)
$f(c_{13})$	=	(had	effect		SBJ	NULL	ATT	ATT)
$f(c_{14})$	=	(ROOT	had	8 C 464	NULL	NULL	SBJ	OBJ)
$f(c_{15})$	=	(had	And Sale	NULL	SBJ	OBJ	NULL	NULL)
$f(c_{16})$	=	(ROOT	had	NULL	NULL	NULL	SBJ	PU)
$f(c_{17})$	=	(NULL	ROOT	NULL	NULL	NULL	NULL	PRED
$f(c_{18})$	=	(ROOT	NULL	NULL	NULL	PRED	NULL	NULL)

Non-projective Parsing

- Configurations (L₁, L₂, Q, A)
 - L₁, L₂ are stacks of partially processed nodes
 - Q = a queue of unprocessed input tokens
 - A = a set of dependency arcs
- Initial configuration for input w₁ ... w_n
 - ([w₀], [], [w₁, ..., w_n], {}, w₀ = ROOT
- Terminal configuration:
 - {[w₀, w₁, ..., w_n], [], [], A

Transitions

Left-Arc(I)

〈[, w _i], [], [w _j ,], A〉	i ≠ 0
<pre> {[], [w_i,], [w_j,], A ∪ {(w_j, I, w_i)} </pre>	$\neg \exists k \exists l' (w_k, l', w_i) \in A$
$([], [W],], [W],], \land \cup [(W], I, W],],$	$\neg W_i \rightarrow^* W_j$
Right-Arc(l)	

 $\begin{array}{ll} \langle [\ldots, \, w_i], \, [\ldots], \, [w_j , \, \ldots], \, A \rangle & \neg \exists k \exists l' \, (w_k, \, l', \, w_j) \in A \\ \langle [\ldots], \, [w_i , \, \ldots], \, [w_j , \, \ldots], \, A \cup \, \{ (w_i, \, l, \, w_j) \} \rangle & \neg \forall k \exists l' \, (w_k, \, l', \, w_j) \in A \\ \neg \forall w_i \rightarrow^* w_j & \neg w_i \rightarrow^* w_j \end{array}$

Transitions

No-Arc

 $([..., w_i], [...], [...], A)$

 $([...], [w_i, ...], [...], A)$

Shift

 $([...]_{L1}, [...]_{L2}, [w_i, ...], A)$

 $([...]_{L1} \bullet [..., w_i]_{L2}, [], [...], A)$

• $L_1 \cdot L_2 =$ the concatenation of L_1 and L_2

Figure 1

Dependency graph for a Czech sentence from the Prague Dependency Treebank.

Non-projective Parsing

- The algorithm is sound and complete for the class of dependency forests
- Time complexity is O(n²)
 - at most n Shift-transitions
 - between the i-th and (i+1)-th Shift-transition there are at most i transitions (left-arc, right-arc, no-arc)

Literature

- Sandra Kübler, Ryan McDonald and Joakim Nivre (2009).
 Dependency Parsing.
- Joakim Nivre (2008). Algorithms for Deterministic Incremental Dependency Parsing. Computational Linguistics 34(4), 513–553.