Computational Linguistics Dependency-based Parsing

Clayton Greenberg
Stefan Thater

FR 4.7 Allgemeine Linguistik (Computerlinguistik)
Universität des Saarlandes
Summer 2016

Acknowledgements

- These slides are heavily inspired by
- an ESSLLI 2007 course by Joakim Nivre and Ryan McDonald
- an ACL-COLING tutorial by Joakim Nivre and Sandra Kübler

Phrase-Structure Trees

Dependency Trees

- Basic idea:
- Syntactic structure = lexical items linked by relations
- Syntactic structures are usually trees (... but not always)
- Relations H \rightarrow D
- H is the head (or governor)
- D is the dependent

Dependency Trees

- Parsers
- are easy to implement and evaluate
- Dependency-based representations
- are suitable for free word order languages
- are often close to the predicate argument structure

Dependency Trees

- Some criteria for dependency relations between a head H and a dependent D in a linguistic construction C :
- H determines the syntactic category of $\mathrm{C} ; \mathrm{H}$ can replace C .
- H determines the semantic category of C; D specifies H .
- H is obligatory; D may be optional.
- H selects D and determines whether D is obligatory.
- The form of D depends on H (agreement or government).
- The linear position of D is specified with reference to H.

Dependency Trees

- Clear cases:
- Subject, Object, ...
- Less clear cases:
- complex verb groups
- subordinate clauses
- coordination

Dependency Graphs

- Graph $G=\langle V, A, L,<\rangle$
- V = a set of vertices (nodes)
- A = a set of arcs (directed edges)
- L = a set of edge labels
- < = a linear order on V

Dependency Trees - Notation

Dependency Graphs / Trees

- Formal conditions on dependency graphs:
- G is weakly connected
- G is acyclic
- Every node in G has at most one head
- G is projective

Projectivity

- A dependency graph G is projective iff
- if $w_{i} \rightarrow w_{j}$, then $w_{i} \rightarrow^{*} w_{k}$ for all $w_{i}<w_{k}<w_{j}$ or $w_{j}<w_{k}<w_{i}$
- if w_{i} is the head of w_{j}, then there must be a directed path from w_{i} to w_{k}, for all w_{k} between w_{i} and w_{j}.
- We need non-projectivity for
- long distance dependencies
- free word order

Projectivity

Projectivity

Language Sentences Dependencies

Arabic [Maamouri and Bies 2004]	11.2%	0.4%
Basque [Aduriz et al. 2003]	26.2%	2.9%
Czech [Hajic et al. 2001]	23.2%	1.9%
Danish [Kromann 2003]	15.6%	1.0%
Greek [Prokopidis et al. 2005]	20.3%	1.1%
Russian [Boguslavsky et al. 2000]	10.6%	0.9%
Slovenian [Dzeroski et al. 2006]	22.2%	1.9%
Turkish [Oflazer et al. 2003]	11.6%	1.5%

Dependency-based Parsing

- Grammar-based
- Data-driven
- Transition-based
- Graph-based

Transition-based Parsing

- Configurations $\langle\mathrm{S}, \mathrm{Q}, \mathrm{A}\rangle$
- $\mathrm{S}=\mathrm{a}$ stack of partially processed tokens (nodes)
- $\mathrm{Q}=\mathrm{a}$ queue of unprocessed input tokens
- A = a set of dependency arcs
- Initial configuration for input $\mathrm{w}_{1} \ldots \mathrm{w}_{\mathrm{n}}$
- 〈[$\left.\left.w_{0}\right],\left[w_{1}, \ldots, w_{n}\right],\{ \}\right\rangle, w_{0}=$ ROOT
- Terminal (accepting) configuration
- (..., [], ...)

Transitions („Arc-Standard")

- Left-Arc(r)
- adds a dependency arc $\left(w_{j}, r, w_{i}\right)$ to the arc set A, where w_{i} is the word on top of the stack and w_{j} is the first word in the buffer, and pops the stack.
- Right-Arc(r)
- adds a dependency $\operatorname{arc}\left(w_{i}, r, w_{j}\right)$ to the $\operatorname{arc} \operatorname{set} A$, where w_{i} is the word on top of the stack and w_{j} is the first word in the buffer, pops the stack and replaces w_{j} by w_{i} at the head of buffer.

Transitions („Arc-Standard")

- Left-Arc(r)

$$
\frac{\left\langle\left[\ldots, w_{i}\right],\left[w_{j}, \ldots\right], A\right\rangle}{\left\langle[\ldots],\left[w_{j}, \ldots\right], A \cup\left\{\left(w_{j}, r, w_{i}\right)\right\}\right\rangle} \quad i \neq 0, \neg \exists k \exists l^{\prime}\left(w_{k}, l^{\prime}, w_{i}\right) \in A
$$

- Right-Arc(r)

$$
\frac{\left\langle\left[\ldots, w_{i}\right],\left[w_{j}, \ldots\right], A\right\rangle}{\left\langle[\ldots],\left[w_{i}, \ldots\right], A \cup\left\{\left(w_{i}, r, w_{j}\right)\right\}\right\rangle} \quad \neg \exists k \exists l^{\prime}\left(w_{k}, l^{\prime}, w_{j}\right) \in A
$$

■ Shift

$$
\frac{\left\langle[\ldots],\left[w_{i}, \ldots\right], A\right\rangle}{\left\langle\left[\ldots, w_{i}\right],[\ldots], A\right\rangle}
$$

An Example

Figure 2
Dependency graph for an English sentence from the Penn Treebank.

An Example

	[0],	[1, ..., 9],	\emptyset
SHIFT \Longrightarrow	[0,1],	[2, ..., 9],	\emptyset
LEFT-ARC ${ }_{\text {NMOD }} \Longrightarrow$	[0],	[2, .., 9],	$A_{1}=\{(2, \mathrm{NMOD}, 1)\}$
SHIFT \Longrightarrow	[0,2],	[3, ..., 9],	A_{1}
LEFT-ARC ${ }_{\text {SbJ }} \Longrightarrow$	[0],	[3, ..., 9],	$A_{2}=A_{1} \cup\{(3, \mathrm{SBJ}, 2)\}$
SHIFT \Longrightarrow	[0,3],	[4, .., 9],	A_{2}
SHIFT \Longrightarrow	[0,3,4],	[$5, \ldots, 9]$,	A_{2}
LEFT-ARC ${ }_{\text {NMOD }} \Longrightarrow$	[0,3],	[$5, \ldots, 9]$,	$A_{3}=A_{2} \cup\{(5, \mathrm{NMOD}, 4)\}$
SHIFT \Longrightarrow	[0,3,5],	$[6, \ldots, 9]$,	A_{3}
SHIFT \Longrightarrow	[$0, \ldots .6$],	[7, 8, 9],	A_{3}
SHIFT \Longrightarrow	[0, ..., 7],	[8,9],	A_{3}
LEFT-ARC ${ }_{\text {NMOD }} \Longrightarrow$	[0, .. 6],	[8,9],	$A_{4}=A_{3} \cup\{(8, \mathrm{NMOD}, 7)\}$
RIGHT-ARC ${ }_{\text {PMOD }}^{\text {S }}$ ¢	[0,3,5],	[6,9],	$A_{5}=A_{4} \cup\{(6$, PMOD, 8$)\}$
RIGHT-ARC ${ }_{\text {NMOD }}^{\text {S }}$ ([0,3],	[5,9$]$,	$A_{6}=A_{5} \cup\{(5, \mathrm{NMOD}, 6)\}$
RIGHT-ARC ${ }_{\text {OBJ }}^{s} \Longrightarrow$	[0],	[3,9],	$A_{7}=A_{6} \cup\{(3$, OBJ, 5$)\}$
SHIFT \Longrightarrow	[0,3],	[9],	A_{7}
RIGHT-ARC ${ }_{\text {P }}^{\text {S }}$ ¢	[0],	[3],	$A_{8}=A_{7} \cup\{(3, \mathrm{P}, 9)\}$
RIGHT-ARC ${ }_{\text {ROOT }}^{\text {S }}$ ¢	[],	[0],	$A_{9}=A_{8} \cup\{(0$, ROOT, 3$)\}$
SHIFT \Longrightarrow	[0],	[],	A_{9}

Deterministic Parsing

- oracle(c):
- predicts the next transition
- parse($w_{1} \ldots w_{n}$):
- c:= $\left\langle\left[w_{0}=\right.\right.$ ROOT $\left.],\left[w_{1}, \ldots, w_{n}\right],\{ \}\right\rangle$
- while c is not terminal
- $\mathrm{t}:=$ oracle(c)
- c:= t(c)
- return $G=\left\langle\left\{w_{0}, \ldots, w_{n}\right\}, A_{c}\right\rangle$

Deterministic Parsing

- Linear time complexity: the algorithm terminates after 2 n steps for input sentences with n words.
- The algorithm is complete and correct for the class of projective dependency trees:
- For every projective dependency tree T there is a sequence of transitions that generates T
- Every sequence of transition steps generates a projective dependency tree
- Whether the resulting dependency tree is correct or not depends of course on the oracle.

The oracle

- Approximate the oracle by a classifier
- Represent configurations be feature vectors; for instance
- lexical properties (word form, lemma)
- category (part of speech)
- labels of partial dependency trees

An Example

f(c_{0})	$=$ (root	Economic	news	NULL	null	nuLL	nulL)
f(c_{1})	$=$ (Economic	news	had	null	null	null	nULL)
f(c_{2})	$=$ (root	news	had	null	null	ATT	nULL)
f(c_{3})	$=$ (news	had	little	ATT	NULL	NULL	nULL)
f(c_{4})	$=$ (root	had	little	null	NULL	SBJ	nULL)
f(cs)	$=$ (had	little	effect	SBJ	null	null	nULL)
f(c_{6})	$=$ (little	effect	on	null	nULL	null	null)
f(c_{7})	$=$ (had	effect	on	SBJ	null	ATT	null)
f(c_{8})	$=$ (effect	on	financial	ATT	null	null	null)
f(c9)	$=$ (on	financial	markets	null	null	null	null)
$\mathbf{f}\left(c_{10}\right)$	$=$ (financial	markets	.	null	null	null	null)
f(c_{11})	$=$ (on	markets	.	null	null	ATT	null)
f(c_{12})	$=$ (effect	on		ATT	null	null	ATT)
f(c_{13})	$=$ (had	effect	.	SBJ	NUL	ATT	ATT)
f(c_{14})	$=$ (root	had		null	null	SBJ	OBJ)
f(c_{15})	$=$ (had		null	SBJ	OBJ	null	null)
f(c_{16})	$=$ (root	had	null	null	null	SBJ	PU)
f(c_{17})	$=$ (nUlL	Rоot	null	null	NULL	null	PRED)
f(c_{18})	$=$ (root	null	null	null	PRED	null	null)

Non-projective Parsing

- Configurations $\left\langle L_{1}, L_{2}, Q, A\right\rangle$
- $\mathrm{L}_{1}, \mathrm{~L}_{2}$ are stacks of partially processed nodes
- $\mathrm{Q}=\mathrm{a}$ queue of unprocessed input tokens
- A = a set of dependency arcs
- Initial configuration for input $w_{1} \ldots W_{n}$
- 〈[$\left.\left.w_{0}\right],[],\left[w_{1}, \ldots, w_{n}\right],\{ \}\right\rangle, w_{0}=$ ROOT
- Terminal configuration:
- 〈[wo, $\left.w_{1}, \ldots, w_{n}\right],[],[], A$)

Transitions

- Left-Arc(I)

$$
\begin{array}{lr}
\left\langle\left[\ldots, w_{i}\right],[\ldots],\left[w_{j}, \ldots\right], A\right\rangle & i \neq 0 \\
\left\langle[\ldots],\left[w_{i}, \ldots\right],\left[w_{j}, \ldots\right], A \cup\left\{\left(w_{j}, l, w_{i}\right)\right\}\right\rangle & \neg \exists k \exists l^{\prime}\left(w_{k}, l^{\prime}, w_{i}\right) \in A \\
\neg w_{i} \rightarrow w_{j}^{*}
\end{array}
$$

- Right-Arc(I)

$$
\begin{array}{rr}
\left\langle\left[\ldots, w_{i}\right],[\ldots],\left[w_{j}, \ldots\right], A\right\rangle & \neg \exists k \exists I^{\prime}\left(w_{k}, l^{\prime}, w_{j}\right) \in A \\
\left\langle[\ldots],\left[w_{i}, \ldots\right],\left[w_{j}, \ldots\right], A \cup\left\{\left(w_{i}, l, w_{j}\right)\right\}\right\rangle & \neg w_{i} \rightarrow * w_{j}
\end{array}
$$

Transitions

- No-Arc
$\frac{\left\langle\left[\ldots, w_{i}\right],[\ldots],[\ldots], A\right\rangle}{\left\langle[\ldots],\left[w_{i}, \ldots\right],[\ldots], A\right\rangle}$
- Shift

$$
\begin{aligned}
& \frac{\left\langle[\ldots]_{\mathrm{L} 1},[\ldots]_{\mathrm{L} 2},\left[\mathrm{w}_{\mathrm{i}}, \ldots\right], \mathrm{A}\right\rangle}{\left\langle[\ldots]_{\mathrm{L} 1} \cdot\left[\ldots, \mathrm{w}_{\mathrm{i}}\right]_{\mathrm{L} 2},[],[\ldots], \mathrm{A}\right\rangle} \\
& \mathrm{L}_{1} \cdot \mathrm{~L}_{2}=\text { the concatenation of } \mathrm{L}_{1} \text { and } \mathrm{L}_{2}
\end{aligned}
$$

An Example

AuxK

Figure 1
Dependency graph for a Czech sentence from the Prague Dependency Treebank.

An Example

	$([0]$,	$[1$,	$[1, \ldots, 8], \emptyset$
SHIFT $^{\lambda} \Longrightarrow([0,1]$,	[],	$[2, \ldots, 8], \emptyset$	
RIGHT-ARC			

An Example

No-ARC ${ }^{n} \Longrightarrow$	[$0, \ldots, 4$], [5],	[6,7,8],	A_{5}
No-ARC ${ }^{n} \Longrightarrow$	([0, .., 3], [4,5],	[6,7,8],	A_{5}
Right-ARCAux ${ }_{\text {a }}^{n}$ ¢	$[0,1,2], \quad[3,4,5]$,	$[6,7,8]$,	$A_{6}=A_{5} \cup\{(3, \operatorname{AuxP}, 6)\}$
$\mathrm{SHIFT}^{\text {d }} \Longrightarrow$	([0, .., 6], [],	[7,8],	A_{6}
Right-ARC ${ }_{\text {Adv }}^{n} \Longrightarrow$	[0, .., 5], [6],	[7,8],	$A_{7}=A_{6} \cup\{(6, \mathrm{Adv}, 7)\}$
SHIFT ${ }^{\lambda}$ ¢	([0, .., 7], [],	[8],	A_{7}
NO-ARC ${ }^{n}$ ¢	([0, .., 6], [7],	[8],	A_{7}
No-ARC ${ }^{n} \Longrightarrow$	([0, .., 5], [6,7],	[8],	A_{7}
No-Arc ${ }^{n} \Longrightarrow$	($[0, \ldots, 4],[5,6,7]$,	[8],	A_{7}
No-ARC ${ }^{n} \Longrightarrow$	([0, .., 3], [4, .., 7],	[8],	A_{7}
No-ARC ${ }^{n} \Longrightarrow$	([0, 1, 2], [3, ...7],	[8],	A_{7}
No-ARC ${ }^{\text {n }}$ ¢	([0, 1], [2, .., 7],	[8],	A_{7}
No-ARC ${ }^{\text {n }}$ ¢	([0], [1, . . 7],	[8],	A_{7}
Right-Arc ${ }_{\text {AuxK }}^{n}=$	([], [0, .., 7],	[8],	$A_{8}=A_{7} \cup\{(0, \mathrm{AuxK}, 8)\}$
SHIFT ${ }^{\text { }}$	([0, .. 8], [],	[],	A_{8}

Non-projective Parsing

- The algorithm is sound and complete for the class of dependency forests
- Time complexity is $\mathrm{O}\left(\mathrm{n}^{2}\right)$
- at most n Shift-transitions
- between the i-th and (i+1)-th Shift-transition there are at most i transitions (left-arc, right-arc, no-arc)

Literature

- Sandra Kübler, Ryan McDonald and Joakim Nivre (2009). Dependency Parsing.
- Joakim Nivre (2008). Algorithms for Deterministic Incremental Dependency Parsing. Computational Linguistics 34(4), 513-553.

