
Computational Linguistics
Dependency-based Parsing

Clayton Greenberg
Stefan Thater

FR 4.7 Allgemeine Linguistik (Computerlinguistik)
Universität des Saarlandes
Summer 2016

Acknowledgements

■ These slides are heavily inspired by
■ an ESSLLI 2007 course by Joakim Nivre and Ryan McDonald
■ an ACL-COLING tutorial by Joakim Nivre and Sandra Kübler

2

Phrase-Structure Trees

3

S

NP

JJ NN

VP PU

VBD NP

JJ NN

PP

IN NP

JJ NNS

Economic news had

little effect on

financial markets

.

Dependency Trees

■ Basic idea:
■ Syntactic structure = lexical items linked by relations
■ Syntactic structures are usually trees (… but not always)

■ Relations H → D
■ H is the head (or governor)
■ D is the dependent

4

Dependency Parsing

Dependency Syntax

! The basic idea:
! Syntactic structure consists of lexical items, linked by binary

asymmetric relations called dependencies.

! Many different theoretical frameworks

ROOT Economic news had little effect on financial markets .

pred obj

p

sbjnmod nmod nmod

pc

nmod

Sorting Out Dependency Parsing 5(38)

Dependency Trees

■ Parsers
■ are easy to implement and evaluate

■ Dependency-based representations
■ are suitable for free word order languages
■ are often close to the predicate argument structure

5

Dependency Parsing

Dependency Syntax

! The basic idea:
! Syntactic structure consists of lexical items, linked by binary

asymmetric relations called dependencies.

! Many different theoretical frameworks

ROOT Economic news had little effect on financial markets .

pred obj

p

sbjnmod nmod nmod

pc

nmod

Sorting Out Dependency Parsing 5(38)

Dependency Trees

■ Some criteria for dependency relations between a head
H and a dependent D in a linguistic construction C:
■ H determines the syntactic category of C; H can replace C.
■ H determines the semantic category of C; D specifies H.
■ H is obligatory; D may be optional.
■ H selects D and determines whether D is obligatory.
■ The form of D depends on H (agreement or government).
■ The linear position of D is specified with reference to H.

6

Dependency Trees

■ Clear cases:
■ Subject, Object, …

■ Less clear cases:
■ complex verb groups
■ subordinate clauses
■ coordination
■ …

7

Dependency Graphs

■ Graph G = ⟨V, A, L, <⟩
■ V%= a set of vertices (nodes)
■ A%= a set of arcs (directed edges)
■ L% = a set of edge labels
■ <%= a linear order on V

8

Dependency Parsing

Dependency Syntax

! The basic idea:
! Syntactic structure consists of lexical items, linked by binary

asymmetric relations called dependencies.

! Many different theoretical frameworks

ROOT Economic news had little effect on financial markets .

pred obj

p

sbjnmod nmod nmod

pc

nmod

Sorting Out Dependency Parsing 5(38)

Dependency Trees – Notation

9

had little effect

nmod

obj

had little effect

obj

nmo
d

Dependency Graphs / Trees

■ Formal conditions on dependency graphs:
■ G is weakly connected
■ G is acyclic
■ Every node in G has at most one head
■ G is projective

10

Projectivity

■ A dependency graph G is projective iff
■ if wi → wj, then wi →* wk for all wi < wk < wj or wj < wk < wi

■ if wi is the head of wj, then there must be a directed path
from wi to wk, for all wk between wi and wj.

■ We need non-projectivity for
■ long distance dependencies
■ free word order

11

wi wk wj

Projectivity

12

Dependency Parsing

Dependency Syntax

! The basic idea:
! Syntactic structure consists of lexical items, linked by binary

asymmetric relations called dependencies.

! Many different theoretical frameworks

ROOT Economic news had little effect on financial markets .

pred obj

p

sbjnmod nmod nmod

pc

nmod

Sorting Out Dependency Parsing 5(38)

Dependency Parsing

Projectivity

! A dependency tree T is projective iff
! for every arc wi → wj and every node wk between wi and wj in

the linear order, there is a (directed) path from wi to wk .
! Most theoretical frameworks do not assume projectivity.
! Non-projective structures are needed to account for

! long-distance dependencies,
! free word order.

ROOT What did economic news have little effect on ?

pred obj

vg

p

sbj

nmod nmod nmod

pc

Sorting Out Dependency Parsing 7(38)

Projectivity

13

Language Sentences Dependencies

Arabic [Maamouri and Bies 2004] 11.2% 0.4%

Basque [Aduriz et al. 2003] 26.2% 2.9%

Czech [Hajic et al. 2001] 23.2% 1.9%

Danish [Kromann 2003] 15.6% 1.0%

Greek [Prokopidis et al. 2005] 20.3% 1.1%

Russian [Boguslavsky et al. 2000] 10.6% 0.9%

Slovenian [Dzeroski et al. 2006] 22.2% 1.9%

Turkish [Oflazer et al. 2003] 11.6% 1.5%

Dependency-based Parsing

14

■ Grammar-based

■ Data-driven
■ Transition-based
■ Graph-based

Transition-based Parsing

■ Configurations ⟨S, Q, A⟩
■ S = a stack of partially processed tokens (nodes)
■ Q = a queue of unprocessed input tokens
■ A = a set of dependency arcs

■ Initial configuration for input w1 … wn

■ ⟨[w0], [w1, …, wn], {}⟩, w0 = ROOT

■ Terminal (accepting) configuration
■ ⟨…, [], …⟩

15

Transitions („Arc-Standard“)

■ Left-Arc(r)
■ adds a dependency arc (wj , r, wi) to the arc set A, where wi

is the word on top of the stack and wj is the first word in
the buffer, and pops the stack.

■ Right-Arc(r)
■ adds a dependency arc (wi , r, wj) to the arc set A, where wi

is the word on top of the stack and wj is the first word in
the buffer, pops the stack and replaces wj by wi at the head
of buffer.

16

■ Left-Arc(r)
⟨[…, wi], [wj, …], A⟩

⟨[…], [wj, …], A ∪ {(wj, r, wi)}⟩

■ Right-Arc(r)
⟨[…, wi], [wj, …], A⟩

⟨[…], [wi, …], A ∪ {(wi, r, wj)}⟩

■ Shift
⟨[…], [wi, …], A⟩

⟨[…, wi], […], A⟩

Transitions („Arc-Standard“)

17

i ≠ 0, ¬∃k∃l’ (wk, l’, wi) ∈ A

¬∃k∃l’ (wk, l’, wj) ∈ A

An Example

18

Computational Linguistics Volume 34, Number 4

(“Only one of them concerns quality.”)

ROOT0 Z1
(Out-of

✞ ☎

❄

AuxP

nich2
them

✞ ☎

❄

Atr

je3
is

✞ ☎

❄

Pred

jen4
only

✞ ☎

❄

AuxZ

jedna5
one-FEM-SG

✞ ☎

❄

Sb

na6
to

✞ ☎

❄

AuxP

kvalitu7
quality

❄
✞ ☎

Adv

.8

.)

✞ ☎

❄

AuxK

Figure 1
Dependency graph for a Czech sentence from the Prague Dependency Treebank.

ROOT0 Economic1

✞ ☎

❄

NMOD

news2

✞ ☎

❄

SBJ

had3

✞ ☎

❄

ROOT

little4

✞ ☎

❄

NMOD

effect5

✞ ☎

❄

OBJ

on6

✞ ☎

❄

NMOD

financial7

✞ ☎

❄

NMOD

markets8

✞ ☎

❄

PMOD

.9
❄

✞ ☎

P

Figure 2
Dependency graph for an English sentence from the Penn Treebank.

Dependency Treebank (Hajič et al. 2001; Böhmová et al. 2003), and in Figure 2, for an
English sentence taken from the Penn Treebank (Marcus, Santorini, and Marcinkiewicz
1993; Marcus et al. 1994).1 An artificial word ROOT has been inserted at the beginning
of each sentence, serving as the unique root of the graph. This is a standard device that
simplifies both theoretical definitions and computational implementations.

Definition 1
Given a set L = {l1, . . . , l|L|} of dependency labels, a dependency graph for a sentence
x = (w0, w1, . . . , wn) is a labeled directed graph G = (V, A), where

1. V = {0, 1, . . . , n} is a set of nodes,
2. A ⊆ V × L × V is a set of labeled directed arcs.

The set V of nodes (or vertices) is the set of non-negative integers up to and including
n, each corresponding to the linear position of a word in the sentence (including ROOT).
The set A of arcs (or directed edges) is a set of ordered triples (i, l, j), where i and j
are nodes and l is a dependency label. Because arcs are used to represent dependency
relations, we will say that i is the head and l is the dependency type of j. Conversely,
we say that j is a dependent of i.

1 In the latter case, the dependency graph has been derived automatically from the constituency-based
annotation in the treebank, using the Penn2Malt program, available at http://w3.msi.vxu.se/users/
nivre/research/Penn2Malt.html.

516

An Example

19

Computational Linguistics Volume 34, Number 4

Transition Configuration
([0], [1, . . . , 9], ∅)

SHIFT =⇒ ([0, 1], [2, . . . , 9], ∅)
LEFT-ARCNMOD =⇒ ([0], [2, . . . , 9], A1 = {(2, NMOD, 1)})

SHIFT =⇒ ([0, 2], [3, . . . , 9], A1)
LEFT-ARCSBJ =⇒ ([0], [3, . . . , 9], A2 = A1∪{(3, SBJ, 2)})

SHIFT =⇒ ([0, 3], [4, . . . , 9], A2)
SHIFT =⇒ ([0, 3, 4], [5, . . . , 9], A2)

LEFT-ARCNMOD =⇒ ([0, 3], [5, . . . , 9], A3 = A2∪{(5, NMOD, 4)})
SHIFT =⇒ ([0, 3, 5], [6, . . . , 9], A3)
SHIFT =⇒ ([0, . . . 6], [7, 8, 9], A3)
SHIFT =⇒ ([0, . . . , 7], [8, 9], A3)

LEFT-ARCNMOD =⇒ ([0, . . . 6], [8, 9], A4 = A3∪{(8, NMOD, 7)})
RIGHT-ARCs

PMOD =⇒ ([0, 3, 5], [6, 9], A5 = A4∪{(6, PMOD, 8)})
RIGHT-ARCs

NMOD =⇒ ([0, 3], [5, 9], A6 = A5∪{(5, NMOD, 6)})
RIGHT-ARCs

OBJ =⇒ ([0], [3, 9], A7 = A6∪{(3, OBJ, 5)})
SHIFT =⇒ ([0, 3], [9], A7)

RIGHT-ARCs
P =⇒ ([0], [3], A8 = A7∪{(3, P, 9)})

RIGHT-ARCs
ROOT =⇒ ([], [0], A9 = A8∪{(0, ROOT, 3)})

SHIFT =⇒ ([0], [], A9)

Figure 4
Arc-standard transition sequence for the English sentence in Figure 2.

The arc-standard parser is the closest correspondent to the familiar shift-reduce parser
for context-free grammars (Aho, Sethi, and Ullman 1986). The LEFT-ARCl and RIGHT-
ARCs

l transitions correspond to reduce actions, replacing a head-dependent structure
with its head, whereas the SHIFT transition is exactly the same as the shift action. One
peculiarity of the transitions, as defined here, is that the “reduce” transitions apply to
one node on the stack and one node in the buffer, rather than two nodes on the stack.
The reason for this formulation is to facilitate comparison with the arc-eager parser
described in the next section and to simplify the definition of terminal configurations.
By way of example, Figure 4 shows the transition sequence needed to parse the English
sentence in Figure 2.

Theorem 1
The arc-standard, stack-based algorithm is correct for the class of projective dependency
forests.

Proof 1
To show the soundness of the algorithm, we show that the dependency graph defined
by the initial configuration, Gcs(x) = (Vx, ∅), is a projective dependency forest, and that
every transition preserves this property. We consider each of the relevant conditions in
turn, keeping in mind that the only transitions that modify the graph are LEFT-ARCl
and RIGHT-ARCs

l .

1. ROOT: The node 0 is a root in Gcs(x), and adding an arc of the form (i, l, 0) is
prevented by an explicit precondition of LEFT-ARCl.

522

Deterministic Parsing

■ oracle(c):
■ predicts the next transition

■ parse(w1 … wn):
■ c := ⟨[w0 = ROOT], [w1, …, wn], {}⟩
■ while c is not terminal

■ t := oracle(c)
■ c := t(c)

■ return G = ⟨{w0, …, wn}, Ac⟩

20

Deterministic Parsing

■ Linear time complexity: the algorithm terminates after
2n steps for input sentences with n words.

■ The algorithm is complete and correct for the class of
projective dependency trees:
■ For every projective dependency tree T there is a sequence

of transitions that generates T
■ Every sequence of transition steps generates a projective

dependency tree

■ Whether the resulting dependency tree is correct or not
depends of course on the oracle.

21

The oracle

■ Approximate the oracle by a classifier

■ Represent configurations be feature vectors; for
instance
■ lexical properties (word form, lemma)
■ category (part of speech)
■ labels of partial dependency trees
■ …

22

An Example

23

Non-projective Parsing

■ Configurations ⟨L1, L2, Q, A⟩
■ L1, L2 are stacks of partially processed nodes
■ Q = a queue of unprocessed input tokens
■ A = a set of dependency arcs

■ Initial configuration for input w1 … wn

■ ⟨[w0], [], [w1, …, wn], {}⟩, w0 = ROOT

■ Terminal configuration:
■ ⟨[w0, w1, …, wn], [], [], A⟩

24

Transitions

■ Left-Arc(l)
⟨[…, wi], […], [wj, …], A⟩

⟨[…], [wi, …], [wj, …], A ∪ {(wj, l, wi)}⟩

■ Right-Arc(l)
⟨[…, wi], […], [wj, …], A⟩

⟨[…], [wi, …], [wj, …], A ∪ {(wi, l, wj)}⟩

25

i ≠ 0
¬∃k∃l’ (wk, l’, wi) ∈ A

¬ wi →* wj

¬∃k∃l’ (wk, l’, wj) ∈ A
¬ wi →* wj

Transitions

■ No-Arc
⟨[…, wi], […], […], A⟩

⟨[…], [wi, …], […], A⟩

■ Shift
⟨[…]L1, […]L2, [wi, …], A⟩

⟨[…]L1 • […, wi]L2, [], […], A⟩

■ L1 • L2 = the concatenation of L1 and L2

26

An Example

27

Computational Linguistics Volume 34, Number 4

(“Only one of them concerns quality.”)

ROOT0 Z1
(Out-of

✞ ☎

❄

AuxP

nich2
them

✞ ☎

❄

Atr

je3
is

✞ ☎

❄

Pred

jen4
only

✞ ☎

❄

AuxZ

jedna5
one-FEM-SG

✞ ☎

❄

Sb

na6
to

✞ ☎

❄

AuxP

kvalitu7
quality

❄
✞ ☎

Adv

.8

.)

✞ ☎

❄

AuxK

Figure 1
Dependency graph for a Czech sentence from the Prague Dependency Treebank.

ROOT0 Economic1

✞ ☎

❄

NMOD

news2

✞ ☎

❄

SBJ

had3

✞ ☎

❄

ROOT

little4

✞ ☎

❄

NMOD

effect5

✞ ☎

❄

OBJ

on6

✞ ☎

❄

NMOD

financial7

✞ ☎

❄

NMOD

markets8

✞ ☎

❄

PMOD

.9
❄

✞ ☎

P

Figure 2
Dependency graph for an English sentence from the Penn Treebank.

Dependency Treebank (Hajič et al. 2001; Böhmová et al. 2003), and in Figure 2, for an
English sentence taken from the Penn Treebank (Marcus, Santorini, and Marcinkiewicz
1993; Marcus et al. 1994).1 An artificial word ROOT has been inserted at the beginning
of each sentence, serving as the unique root of the graph. This is a standard device that
simplifies both theoretical definitions and computational implementations.

Definition 1
Given a set L = {l1, . . . , l|L|} of dependency labels, a dependency graph for a sentence
x = (w0, w1, . . . , wn) is a labeled directed graph G = (V, A), where

1. V = {0, 1, . . . , n} is a set of nodes,
2. A ⊆ V × L × V is a set of labeled directed arcs.

The set V of nodes (or vertices) is the set of non-negative integers up to and including
n, each corresponding to the linear position of a word in the sentence (including ROOT).
The set A of arcs (or directed edges) is a set of ordered triples (i, l, j), where i and j
are nodes and l is a dependency label. Because arcs are used to represent dependency
relations, we will say that i is the head and l is the dependency type of j. Conversely,
we say that j is a dependent of i.

1 In the latter case, the dependency graph has been derived automatically from the constituency-based
annotation in the treebank, using the Penn2Malt program, available at http://w3.msi.vxu.se/users/
nivre/research/Penn2Malt.html.

516

An Example

28

Computational Linguistics Volume 34, Number 4

Transition Configuration
([0], [], [1, . . . , 8], ∅)

SHIFTλ =⇒ ([0, 1], [], [2, . . . , 8], ∅)
RIGHT-ARCn

Atr =⇒ ([0], [1], [2, . . . , 8], A1 = {(1, Atr, 2)})
SHIFTλ =⇒ ([0, 1, 2], [], [3, . . . , 8], A1)

NO-ARCn =⇒ ([0, 1], [2], [3, . . . , 8], A1)
NO-ARCn =⇒ ([0], [1, 2], [3, . . . , 8], A1)

RIGHT-ARCn
Pred =⇒ ([], [0, 1, 2], [3, . . . , 8], A2 = A1∪{(0, Pred, 3)})

SHIFTλ =⇒ ([0, . . . , 3], [], [4, . . . , 8], A2)
SHIFTλ =⇒ ([0, . . . , 4], [], [5, . . . , 8], A2)

LEFT-ARCn
AuxZ =⇒ ([0, . . . , 3], [4], [5, . . . , 8], A3 = A2∪{(5, AuxZ, 4)})

RIGHT-ARCn
Sb =⇒ ([0, 1, 2], [3, 4], [5, . . . , 8], A4 = A3∪{(3, Sb, 5)})

NO-ARCn =⇒ ([0, 1], [2, 3, 4], [5, . . . , 8], A4)
LEFT-ARCn

AuxP =⇒ ([0], [1, . . . , 4], [5, . . . , 8], A5 = A4∪{(5, AuxP, 1)})
SHIFTλ =⇒ ([0, . . . , 5], [], [6, 7, 8], A5)

NO-ARCn =⇒ ([0, . . . , 4], [5], [6, 7, 8], A5)
NO-ARCn =⇒ ([0, . . . , 3], [4, 5], [6, 7, 8], A5)

RIGHT-ARCn
AuxP =⇒ ([0, 1, 2], [3, 4, 5], [6, 7, 8], A6 = A5∪{(3, AuxP, 6)})

SHIFTλ =⇒ ([0, . . . , 6], [], [7, 8], A6)
RIGHT-ARCn

Adv =⇒ ([0, . . . , 5], [6], [7, 8], A7 = A6∪{(6, Adv, 7)})
SHIFTλ =⇒ ([0, . . . , 7], [], [8], A7)

NO-ARCn =⇒ ([0, . . . , 6], [7], [8], A7)
NO-ARCn =⇒ ([0, . . . , 5], [6, 7], [8], A7)
NO-ARCn =⇒ ([0, . . . , 4], [5, 6, 7], [8], A7)
NO-ARCn =⇒ ([0, . . . , 3], [4, . . . , 7], [8], A7)
NO-ARCn =⇒ ([0, 1, 2], [3, . . . , 7], [8], A7)
NO-ARCn =⇒ ([0, 1], [2, . . . , 7], [8], A7)
NO-ARCn =⇒ ([0], [1, . . . , 7], [8], A7)

RIGHT-ARCn
AuxK =⇒ ([], [0, . . . , 7], [8], A8 = A7∪{(0, AuxK, 8)})

SHIFTλ =⇒ ([0, . . . , 8], [], [], A8)

Figure 8
Non-projective transition sequence for the Czech sentence in Figure 1.

c0 = cs(x) and apply exactly the same q transitions, reaching the
configuration cq = (λcq , [], [p], A−p). We then perform exactly p transitions,
in each case choosing LEFT-ARCn

l if the token i at the head of λ1 is a
dependent of p in Gx (with label l), RIGHT-ARCn

l′ if i is the head of p (with
label l′) and NO-ARCn otherwise. One final SHIFTλ transition takes us to
the terminal configuration cm = (λcq |p, [], [], Ax). !

Theorem 8
The worst-case time complexity of the non-projective, list-based algorithm is O(n2),
where n is the length of the input sentence.

Proof 8
Assuming that the oracle and transition functions can be performed in some constant
time, the worst-case running time is bounded by the maximum number of transitions

532

An Example

29

Computational Linguistics Volume 34, Number 4

Transition Configuration
([0], [], [1, . . . , 8], ∅)

SHIFTλ =⇒ ([0, 1], [], [2, . . . , 8], ∅)
RIGHT-ARCn

Atr =⇒ ([0], [1], [2, . . . , 8], A1 = {(1, Atr, 2)})
SHIFTλ =⇒ ([0, 1, 2], [], [3, . . . , 8], A1)

NO-ARCn =⇒ ([0, 1], [2], [3, . . . , 8], A1)
NO-ARCn =⇒ ([0], [1, 2], [3, . . . , 8], A1)

RIGHT-ARCn
Pred =⇒ ([], [0, 1, 2], [3, . . . , 8], A2 = A1∪{(0, Pred, 3)})

SHIFTλ =⇒ ([0, . . . , 3], [], [4, . . . , 8], A2)
SHIFTλ =⇒ ([0, . . . , 4], [], [5, . . . , 8], A2)

LEFT-ARCn
AuxZ =⇒ ([0, . . . , 3], [4], [5, . . . , 8], A3 = A2∪{(5, AuxZ, 4)})

RIGHT-ARCn
Sb =⇒ ([0, 1, 2], [3, 4], [5, . . . , 8], A4 = A3∪{(3, Sb, 5)})

NO-ARCn =⇒ ([0, 1], [2, 3, 4], [5, . . . , 8], A4)
LEFT-ARCn

AuxP =⇒ ([0], [1, . . . , 4], [5, . . . , 8], A5 = A4∪{(5, AuxP, 1)})
SHIFTλ =⇒ ([0, . . . , 5], [], [6, 7, 8], A5)

NO-ARCn =⇒ ([0, . . . , 4], [5], [6, 7, 8], A5)
NO-ARCn =⇒ ([0, . . . , 3], [4, 5], [6, 7, 8], A5)

RIGHT-ARCn
AuxP =⇒ ([0, 1, 2], [3, 4, 5], [6, 7, 8], A6 = A5∪{(3, AuxP, 6)})

SHIFTλ =⇒ ([0, . . . , 6], [], [7, 8], A6)
RIGHT-ARCn

Adv =⇒ ([0, . . . , 5], [6], [7, 8], A7 = A6∪{(6, Adv, 7)})
SHIFTλ =⇒ ([0, . . . , 7], [], [8], A7)

NO-ARCn =⇒ ([0, . . . , 6], [7], [8], A7)
NO-ARCn =⇒ ([0, . . . , 5], [6, 7], [8], A7)
NO-ARCn =⇒ ([0, . . . , 4], [5, 6, 7], [8], A7)
NO-ARCn =⇒ ([0, . . . , 3], [4, . . . , 7], [8], A7)
NO-ARCn =⇒ ([0, 1, 2], [3, . . . , 7], [8], A7)
NO-ARCn =⇒ ([0, 1], [2, . . . , 7], [8], A7)
NO-ARCn =⇒ ([0], [1, . . . , 7], [8], A7)

RIGHT-ARCn
AuxK =⇒ ([], [0, . . . , 7], [8], A8 = A7∪{(0, AuxK, 8)})

SHIFTλ =⇒ ([0, . . . , 8], [], [], A8)

Figure 8
Non-projective transition sequence for the Czech sentence in Figure 1.

c0 = cs(x) and apply exactly the same q transitions, reaching the
configuration cq = (λcq , [], [p], A−p). We then perform exactly p transitions,
in each case choosing LEFT-ARCn

l if the token i at the head of λ1 is a
dependent of p in Gx (with label l), RIGHT-ARCn

l′ if i is the head of p (with
label l′) and NO-ARCn otherwise. One final SHIFTλ transition takes us to
the terminal configuration cm = (λcq |p, [], [], Ax). !

Theorem 8
The worst-case time complexity of the non-projective, list-based algorithm is O(n2),
where n is the length of the input sentence.

Proof 8
Assuming that the oracle and transition functions can be performed in some constant
time, the worst-case running time is bounded by the maximum number of transitions

532

Non-projective Parsing

■ The algorithm is sound and complete for the class of
dependency forests

■ Time complexity is O(n2)
■ at most n Shift-transitions
■ between the i-th and (i+1)-th Shift-transition there are at

most i transitions (left-arc, right-arc, no-arc)

30

Literature

■ Sandra Kübler, Ryan McDonald and Joakim Nivre (2009).
Dependency Parsing.

■ Joakim Nivre (2008). Algorithms for Deterministic
Incremental Dependency Parsing. Computational
Linguistics 34(4), 513–553.

31

