Computational Linguistics Probabilistic Parsing

Clayton Greenberg Stefan Thater

FR 4.7 Allgemeine Linguistik (Computerlinguistik) Universität des Saarlandes Summer 2016

Salespeople sold the dog biscuits

$S \rightarrow NP VP$	$NP \rightarrow NP NP$
$VP \rightarrow V NP$	$NP \rightarrow N$
$VP \rightarrow V NP NP$	DET → the
$NP \rightarrow DET N$	N → dog
$NP \rightarrow DET N N$	

Ambiguity & Disambiguation

Probabilistic disambiguation

choose the one that is most derivation tree if the input sentence is ambiguous (has > 1 derivation trees)

We need ...

- a probabilistic model of (contex-free) grammar
- methods to estimate probabilities

Further Motivation

Natural language is ambiguous

 \Rightarrow disambiguation

Grammar development

⇒ automatically induce grammars

Efficient search

⇒ compute the most likely parse tree first

Robustness

Probabilistic Context-Free Grammars (PCFG)

Probabilistic context-free grammar (PCFG)

- a context-free grammar (V, Σ, R, S)
- a funktion P assigning a value $p \in [0, 1]$ to each rule

• such that $\sum_{\beta \in V^*} P(A \rightarrow \beta) = 1$

- $P(A \rightarrow \beta)$ = the conditional probability that symbol A is expanded to β
 - Alternative notations: $P(\beta \mid A)$, $P(A \rightarrow \beta \mid A)$, $A \rightarrow \beta [p]$

Derivation Trees (Recap)

Derivation trees:

- The root node is labeled with the start symbol S
- Leaf nodes are labeled with terminal symbols or ε
- An inner node and their child nodes correspond to the rules that have been used in the derivation

Parsing:

Compute all derivation trees for a given input

Probabilistic parsing:

Compute the most likely derivation tree

Probabilistic Context-Free Grammar (PCFG)

- A PCFG assigns a probability to each derivation tree of a sentence.
- The probability of a derivation tree T is defined as the product of the probabilities of all the rules that have been used to expand the nodes in T:
 - $P(T, w) = P(T) = \prod_{n \in T} P(R(n))$
 - R(n) is the rule that has been used to expand node n
 - Note: P(T, w) = P(T) P(w | T) = P(T), because P(w | T) = 1
- The probability of a sentence w is the sum of the probabilities of all its derivation trees:
 - $P(w) = \Sigma_T P(w, T)$, for $w \in L(G)$

Salespeople sold the dog biscuits

$S \rightarrow NP VP$	[1.0]
$VP \rightarrow V NP$	[0.8]
$VP \rightarrow V NP NP$	[0.2]
$NP \rightarrow DET N$	[0.5]
$NP \rightarrow N$	[0.3]
$NP \rightarrow DET N N$	[0.15]
$NP \rightarrow NP NP$	[0.05]
DET → the	[1.0]
$N \rightarrow Salespeople$	[0.55]
$N \rightarrow dog$	[0.25]
$N \rightarrow biscuits$	[0.2]
$V \rightarrow sold$	[1.0]

Salespeople sold the dog biscuits

$S \rightarrow NP VP$	[1.0]
$VP \rightarrow V NP$	[0.8]
$VP \rightarrow V NP NP$	[0.2]
$NP \rightarrow DET N$	[0.5]
$NP \rightarrow N$	[0.3]
$NP \rightarrow DET N N$	[0.15]
$NP \rightarrow NP NP$	[0.05]
DET → the	[1.0]
$N \rightarrow Salespeople$	[0.55]
$N \rightarrow dog$	[0.25]
$N \rightarrow biscuits$	[0.2]
$V \rightarrow sold$	[1.0]

 $1.0 \times 0.25 \times 0.3 \times 0.2$

 $= 2.475 \times 10^{-4}$

Salespeople sold the dog biscuits

$S \rightarrow NP VP$	[1.0]
$VP \rightarrow V NP$	[0.8]
$VP \rightarrow V NP NP$	[0.2]
$NP \rightarrow DET N$	[0.5]
$NP \rightarrow N$	[0.3]
$NP \rightarrow DET N N$	[0.15]
$NP \rightarrow NP NP$	[0.05]
DET → <i>the</i>	[1.0]
$N \rightarrow Salespeople$	[0.55]
$N \rightarrow dog$	[0.25]
$N \rightarrow biscuits$	[0.2]
$V \rightarrow sold$	[1.0]

Probabilistic Context-Free Grammar (PCFG)

- The probability of a sentence w is the sum of the probabilities of all its derivation trees:
 - $P(w) = \Sigma_T P(w, T)$, for $w \in L(G)$
- A PCFG G is **consistent** if $\Sigma_{w \in L(G)} P(w) = 1$
- Recursion can lead to inconsistent grammars:
 - $\bullet S \rightarrow S S [0.6]$
 - S → a [0.4]

An inconsistent PCFG

- $S \rightarrow S S [0.6] / [0.4]$
- $S \rightarrow a$ [0.4] / [0.6]

- $P(a^i) = \#trees(a^i) \times 0.6^{i-1} \times 0.4^i = 0.4$
 - P(a) = 0.4, P(aa) = 0.096, P(aaa) = 0.0461, ...
- P(aⁱ) = #trees(aⁱ) × 0.4ⁱ⁻¹ × 0.6ⁱ = 0.4
 - P(a) = 0.6, P(aa) = 0.144, P(aaa) = 0.06912, ...
- Number of trees (#trees) for $a^{i+1} = i$ -th Catalan number

An inconsistent PCFG

Probabilistic Parsing

■ Language modelling ("inside probabilities") compute the probability that S ⇒* w for an input sentence w:

• $P(w) = \sum_T P(w, T)$

Probabilistic parsing ("viterbi scores") compute the most likely derivation tree T(w) for an input sentence w:

•
$$T(w) = \arg \max_{T} P(T | w)$$

= $\arg \max_{T} \frac{P(T, w)}{P(w)}$
= $\arg \max_{T} P(T)$

Properties of PCFGs

- The probability of a (sub) tree is indipendent of
 - the context in which the tree occurs
 - the node(s) that dominates the tree

Probabilistic CYK Parsing

- Extend the CYK algorithm:
 - T[i, j, A] = the probability that $A \Rightarrow^* w_{i+1} \dots w_j$
- Inside probabilities:
 - T[i, j, A] = sum of the probabilities of all derivation trees of the substring w_{i+1} ... w_j

Probability of a derivation tree (parsing)

- T[i, j, A] = the probability of the most likely derivation
- B[i, j, A] = the corresponding derivation tree

CYK (without probabilities)

```
function CYK(G, w1 ... wn):
for i in 1 ... n do
  T[i-1, i] = { A | A \rightarrow wi \in R }
  for j in i - 2 ... 0 do
  T[j, i] = Ø
  for k in j + 1 ... i - 1 do
      T[j, i] = T[j, i] U
          { A | A \rightarrow B C, B \in T[j,k], C \in T[k, i] }
      done
```

done

done

if S E T[0, n] then return True else return False

CYK (with probabilities)

```
function CYK(G, W_1 \dots W_n):
 (initialize T and B)
 for i in 1 ... n do
    for all nonterminals A in G do
        T[i-1, i, A] = P(A \rightarrow W_i)
    for j in i - 2 ... 0 do
        for k in j + 1 ... i - 1 do
           for all A \rightarrow B C do
               pr = T[j, k, B] \times T[k, i, C] \times P(A \rightarrow B C)
               if pr > T[j, i, A] then
                  T[j, i, A] = pr
                   B[j, i, A] = (construct subtree)
 return (B[0, n, S] and T[0, n, S])
```

Learning PCFG Probabilities

Option #1

count frequencies of rules in syntactically annotated treebanks (such as the Penn Treebank)

Option #2

Inside-outside algorithm (not discussed here)

Learning PCFG Probabilities

- We are given a syntactically annotated corpus
 - annotated corpus = a set of derivation trees
- We can construct a grammar from the treebank by identifying the rules with all "subtrees" of height 1
- Estimating rule probabilities:

•
$$P(A \rightarrow \alpha) = \frac{\text{count}(A \rightarrow \alpha)}{\sum_{\beta} \text{count}(A \rightarrow \beta)}$$

■ count(A → α) = the number of times the rule A → α has been used in all trees in the corpus

(Example: Webber/Keller)

Learning PCFG Probabilities

A very small treebank:

- S₁: [s [NP grass] [VP grows]]
- S₂: [s [NP grass] [VP grows] [AP fast]]
- S₃: [s [NP grass] [VP grows] [AP slowly]]
- S₄: [s [NP bananas] [VP grow]]

Rules & rule probabilities:

- $S \rightarrow NP VP$ 2/4
- $S \rightarrow NP VP AP 2/4$
- NP \rightarrow grass 3/4

. . .

Learning PCFG Probabilities

	Rule	Ρ(A → α)	
r_1	$S \rightarrow NP VP$	2/4	
r ₂	$S \rightarrow NP VP AP$	2/4	
r ₃	$NP \rightarrow grass$	3/4	
r ₄	NP \rightarrow bananas	1/4	
r ₅	$VP \rightarrow grows$	3/4	
r ₆	$VP \rightarrow grow$	1/4	
r ₇	$AP \rightarrow fast$	1/2	
r ₈	$AP \rightarrow slowly$	1/2	

Learning PCFG Probabilities

Probabilities of the sentences:

- $P(S_1) = P(r_1) \times P(r_3) \times P(r_5) = 2/4 \times 3/4 \times 3/4 = 0.28125$
- $P(S_2) = P(r_2) \times P(r_3) \times P(r_5) \times P(r_7) = 0.140625$
- $P(S_3) = P(r_2) \times P(r_3) \times P(r_5) \times P(r_7) = 0.140625$
- $P(S_4) = P(r_1) \times P(r_4) \times P(r_6) = 0.03125$

Evaluation

- Coverage: How many sentences are well-formed according to the grammar?
- Accuracy: How many sentences are correctly parsed?
 - measured as "relative correctness" wrt. to category label, start and end position (yield) of all constituents (subtrees)
 - Labelled precision: percentage of correct subtrees in the parser output
 - Labelled recall: percentage of correct subtrees in the gold standard (test corpus)

Evaluation

- Labelled Precision = C / M
- Labelled Recall = C / N
- where
 - C = number of correct constituents produced by the parser
 - M = total number of constituents produced by the parser
 - N = total number of constituents in reference corpus

Binarization

- Replace rules of the form $A \rightarrow A_1 A_2 A_3 \dots A_k [p]$ by
 - $\blacksquare A \rightarrow \langle A_1, \dots, A_{k-1} \rangle A_k \qquad [p]$
 - $(A_1,\ldots,A_{k-1}) \rightarrow A_1 \ldots A_{k-1} [1.0]$
- ... or binarize trees in the treebank before "reading off" the grammar from the trees.

Problems

- The probability of a (sub) tree is indipendent of
 - the context in which the tree occurs
 - the node(s) that dominates the tree
- Problems: we want to capture ...
 - Lexical dependencies
 - Structural dependencies

The two trees differ only in one rule:

• $VP \rightarrow VP PP$

- The two trees differ only in one rule:
 - VP → VP PP
 - $\blacksquare \mathsf{NP} \to \mathsf{NP} \mathsf{PP}$
- \Rightarrow the grammar will either
 - always prefer the 1st rule (VP attachment) or
 - always prefer the 2nd rule (NP-attachment)

But ...

- Workers dumped sacks into a bin
- Fishermen caught tons of herring
- \Rightarrow Lexikalized PCFG

(Manning & Schütze)

Lexical Dependencies

	come	take	think	want
$VP \rightarrow V$	9,5%	2,6%	4,6%	5,7%
$VP \rightarrow V NP$	1,1%	32,1%	0,2%	13,9%
$VP \rightarrow V PP$	35,5%	3,1%	7,1%	0,3%
VP → V SBAR	6,6%	0,3%	73,0%	0,2%
$VP \rightarrow V S$	2,2%	1,3%	4,8%	70,8%
$VP \rightarrow V NP S$	0,1%	5,7%	0,0%	0,3%
$VP \rightarrow V PRT NP$	0,3%	5,8%	0,0%	0,0%
$VP \rightarrow V PRT PP$	6,1%	1,5%	0,2%	0,0%

Structural independencies:

- The (probability of an) application of a rule is independent of all other rules in the derivation tree
- NP → Pronoun vs. NP → Det Noun same probabilities for all occurrences of NP
- **But** ... (Francis &al, 1999)
 - Subject-NP: 91% pronouns, 9% non-pronouns
 - Object-NP: 34% pronouns, 66% non-pronouns
 - (Switchboard corpus, spoken language)
- \Rightarrow Parent annotation

Some dependencies can be "built into" the category symbols.

- Parent Annotation: nodes are annotated with the label of their parent nodes
- Similar effect compared to conditional probabilities
 - $P(NP^S \rightarrow PRP)$
 - $P(NP \rightarrow PRP \mid S)$
- Compare:
 - P(NP-SBJ → PRP) no correspondence to conditional probabilities

- Parent annotation can also be useful for preterminal nodes
- Most frequent adverbs with parent ...
 - ADVP also, now
 - VP not, n't
 - NP only, just
- Penn Treebank no distinction (same POS) between
 - subordinating conjunctions (while, as, if),
 - complementizers (*that, for*)
 - prepositions (of, in, from)

 Parent annotation can also be useful for preterminal nodes

Parent annotation - drawbacks

- the grammar gets larger
- fewer training data for each rule
- reduced generalization ("overfitting")

- The head of a constituent is the "central" word of a phrase
 - Noun NP
 - Verb VP, S
 - Adjektive AP
 - Preposition PP

Lexicalized parsing: annotate nodes with their lexical heads

	Rule	Ρ(A → α)	
r_1	$S_{dumpled} \rightarrow NP_{workers} VP_{dumped}$	1/1	
r ₂	$NP_{workers} \rightarrow NNS_{workers}$	1/1	
r ₃	$NP_{sacks} \rightarrow NNS_{sacks}$	1/2	
r ₄	$NP_{sacks} \rightarrow NP_{sacks} PP_{into}$	1/2	
r ₅	$NP_{bin} \rightarrow DT_a NN_{bin}$	1/1	

Problems:

- this leads to much larger grammars
- its hard to estimate the rule probabilities

Lexicalized parsing

Complexity (CYK)

- Runtime: O(|rules|n³),
- Wost case: |rules| = |nonterminals|³

Lexicalized grammars

- Worst case: |rules| = |nonterminals|³ · |terminals|²
- Iterminals usually much larger than nonterminals
- \Rightarrow O(n⁵) runtime for typical grammars and input sentences

Literature

- Jurafsky & Martin (2009) Speech and Language Processing Kapitel 14.
- Manning & Schütze (1999). Foundations of Statistical Natural Language Processing. Kapitel 11 & 12.
- Eugene Charniak (1993). Statistical Language Learning.
 Kapitel 5.