Computational Linguistics Probabilistic Parsing

Clayton Greenberg
Stefan Thater

FR 4.7 Allgemeine Linguistik (Computerlinguistik)
Universität des Saarlandes
Summer 2016

Salespeople sold the dog biscuits

S	\rightarrow NP VP	NP	\rightarrow NP NP
VP	\rightarrow V NP	NP	$\rightarrow \mathrm{N}$
VP	$\rightarrow V$ NP NP	DET	\rightarrow the
NP	\rightarrow DET N	N	\rightarrow dog
NP	\rightarrow DET N N		\ldots

Ambiguity \& Disambiguation

- Probabilistic disambiguation
choose the one that is most derivation tree if the input sentence is ambiguous (has > 1 derivation trees)
- We need ...
- a probabilistic model of (contex-free) grammar
- methods to estimate probabilities

Further Motivation

- Natural language is ambiguous
\Rightarrow disambiguation
- Grammar development
\Rightarrow automatically induce grammars
- Efficient search
\Rightarrow compute the most likely parse tree first
■ Robustness

Probabilistic Context-Free Grammars (PCFG)

- Probabilistic context-free grammar (PCFG)
- a context-free grammar $\langle\mathrm{V}, \Sigma, \mathrm{R}, \mathrm{S}\rangle$
- a funktion P assigning a value $p \in[0,1]$ to each rule
- such that $\sum_{\beta \in \mathrm{v}^{*}} \mathrm{P}(\mathrm{A} \rightarrow \beta)=1$
- $P(A \rightarrow \beta)=$ the conditional probability that symbol A is expanded to β
- Alternative notations: $P(\beta \mid A), P(A \rightarrow \beta \mid A), A \rightarrow \beta[p]$

Derivation Trees (Recap)

- Derivarion trees:
- The root node is labeled with the start symbol S
- Leaf nodes are labeled with terminal symbols or ε
- An inner node and their child nodes correspond to the rules that have been used in the derivation
- Parsing:

Compute all derivation trees for a given input

- Probabilistic parsing:

Compute the most likely derivation tree

Probabilistic Context-Free Grammar (PCFG)

- A PCFG assigns a probability to each derivation tree of a sentence.
- The probability of a derivation tree T is defined as the product of the probabilities of all the rules that have been used to expand the nodes in T :
- $P(T, w)=P(T)=\Pi_{n \in T} P(R(n))$
- $R(n)$ is the rule that has been used to expand node n
- Note: $P(T, w)=P(T) P(w \mid T)=P(T)$, because $P(w \mid T)=1$
- The probability of a sentence w is the sum of the probabilities of all its derivation trees:
- $P(w)=\Sigma_{T} P(w, T)$, for $w \in L(G)$

Salespeople sold the dog biscuits

$S \rightarrow N P V P$	[1.0]
$\mathrm{VP} \rightarrow \mathrm{V}$ NP	[0.8]
$\mathrm{VP} \rightarrow \mathrm{V}$ NP NP	[0.2]
$N P \rightarrow$ DET N	[0.5]
$N P \rightarrow N$	[0.3]
$N P \rightarrow$ DET N N	[0.15]
$N P \rightarrow N P N P$	[0.05]
DET \rightarrow the	[1.0]
$\mathrm{N} \rightarrow$ Salespeople	[0.55]
$\mathrm{N} \rightarrow$ dog	[0.25]
$\mathrm{N} \rightarrow$ biscuits	[0.2]
$V \rightarrow$ sold	[1.0]

Salespeople sold the dog biscuits

$S \rightarrow N P V P$	[1.0]
$\mathrm{VP} \rightarrow \mathrm{V}$ NP	[0.8]
$V P \rightarrow V N P N P$	[0.2]
$N P \rightarrow$ DET N	[0.5]
$N P \rightarrow N$	[0.3]
$N P \rightarrow$ DET N N	[0.15]
$N P \rightarrow N P N P$	[0.05]
DET \rightarrow the	[1.0]
$\mathrm{N} \rightarrow$ Salespeople	[0.55]
$\mathrm{N} \rightarrow$ dog	[0.25]
$\mathrm{N} \rightarrow$ biscuits	[0.2]
$V \rightarrow$ sold	[1.0]

Salespeople sold the dog biscuits

$S \rightarrow N P V P$	[1.0]
$\mathrm{VP} \rightarrow \mathrm{V}$ NP	[0.8]
$\mathrm{VP} \rightarrow \mathrm{V}$ NP NP	[0.2]
$N P \rightarrow$ DET N	[0.5]
$N P \rightarrow N$	[0.3]
$N P \rightarrow$ DET N N	[0.15]
$N P \rightarrow N P N P$	[0.05]
DET \rightarrow the	[1.0]
$\mathrm{N} \rightarrow$ Salespeople	[0.55]
$\mathrm{N} \rightarrow$ dog	[0.25]
$\mathrm{N} \rightarrow$ biscuits	[0.2]
$V \rightarrow$ sold	[1.0]

Probabilistic Context-Free Grammar (PCFG)

- The probability of a sentence w is the sum of the probabilities of all its derivation trees:
- $P(w)=\Sigma_{T} P(w, T)$, for $w \in L(G)$
- A PCFG G is consistent if $\Sigma_{w \in L(G)} P(w)=1$
- Recursion can lead to inconsistent grammars:
- S \rightarrow S S [0.6]
- $\mathrm{S} \rightarrow \mathrm{a}$ [0.4]

An inconsistent PCFG

- S \rightarrow S S [0.6]/[0.4]

■ $\mathrm{S} \rightarrow \mathrm{a} \quad[0.4] /[0.6]$

- $P\left(a^{i}\right)=\# t r e e s\left(a^{i}\right) \times 0.6^{i-1} \times 0.4^{i}=0.4$
- $P(a)=0.4, P(a a)=0.096, P(a a a)=0.0461, \ldots$
- $P\left(a^{i}\right)=\# t r e e s\left(a^{i}\right) \times 0.4^{i-1} \times 0.6^{i}=0.4$
- $P(a)=0.6, P(a a)=0.144, P(a a a)=0.06912, \ldots$
- Number of trees (\#trees) for $\mathrm{a}^{\mathrm{i}+1}=i$-th Catalan number

An inconsistent PCFG

Probabilistic Parsing

■ Language modelling ("inside probabilities") compute the probability that $S \Rightarrow *$ w for an input sentence w:

- $P(w)=\sum_{T} P(w, T)$

■ Probabilistic parsing ("viterbi scores") compute the most likely derivation tree $\mathrm{T}(\mathrm{w})$ for an input sentence w:

- $\mathrm{T}(\mathrm{w})=\arg \max _{\mathrm{T}} \mathrm{P}(\mathrm{T} \mid \mathrm{w})$

$$
\begin{aligned}
& =\arg \max _{T} \frac{P(T, w)}{P(w)} \\
& =\arg \max _{T} P(T)
\end{aligned}
$$

Properties of PCFGs

- The probability of a (sub) tree is indipendant of
- the context in which the tree occurs
- the node(s) that dominates the tree

Probabilistic CYK Parsing

- Extend the CYK algorithm:
- $\mathrm{T}[\mathrm{i}, \mathrm{j}, \mathrm{A}]=$ the probability that $\mathrm{A} \Rightarrow * \mathrm{w}_{\mathrm{i}+1} \ldots \mathrm{w}_{\mathrm{j}}$
- Inside probabilities:
- $T[i, j, A]=$ sum of the probabilities of all derivation trees of the substring $\mathrm{w}_{\mathrm{i}+1} \ldots \mathrm{w}_{\mathrm{j}}$
- Probability of a derivation tree (parsing)
- $T[i, j, A]=$ the probability of the most likely derivation
- $\mathrm{B}[\mathrm{i}, \mathrm{j}, \mathrm{A}]=$ the corresponding derivation tree

CYK (without probabilities)

function CYK (G, $\left.\mathrm{w}_{1} \ldots \mathrm{w}_{\mathrm{n}}\right)$:

```
for i in 1 ... n do
    T[i-1, i] = { A | A -> wi\in | }
        for j in i - 2 ... 0 do
        T[j, i] = \varnothing
        for k in j + 1 ... i - 1 do
            T[j, i] = T[j, i] u
            {A | A -> B C, B \in T[j,k], C \in T[k, i] }
        done
        done
    done
    if S G T[0, n] then return True else return False
```


CYK (with probabilities)

function CYK (G, $\mathrm{W}_{1} \ldots \mathrm{~W}_{\mathrm{n}}$):
〈initialize T and B)
for i in 1 ... n do
for all nonterminals A in G do $\mathrm{T}[\mathrm{i}-1, \mathrm{i}, \mathrm{A}]=\mathrm{P}\left(\mathrm{A} \rightarrow \mathrm{w}_{\mathrm{i}}\right)$
for j in i - $2 \ldots 0$ do for k in $j+1 \ldots$ i - 1 do
for all $A \rightarrow B C$ do $p r=T[j, k, B] \times T[k, i, C] \times P(A \rightarrow B C)$ if $p r>T[j, i, A]$ then
$\mathrm{T}[\mathrm{j}, \mathrm{i}, \mathrm{A}]=\mathrm{pr}$
$B[j, i, A]=$ (construct subtree〉
return $\langle\mathrm{B}[0, \mathrm{n}, \mathrm{S}]$ and $\mathrm{T}[0, \mathrm{n}, \mathrm{S}]\rangle$

Learning PCFG Probabilities

- Option \#1
count frequencies of rules in syntactically annotated treebanks (such as the Penn Treebank)
- Option \#2

Inside-outside algorithm (not discussed here)

Learning PCFG Probabilities

- We are given a syntactically annotated corpus
- annotated corpus = a set of derivation trees
- We can construct a grammar from the treebank by identifying the rules with all "subtrees" of height 1
- Estimating rule probabilities:
- $P(A \rightarrow \alpha)=\frac{\operatorname{count}(A \rightarrow \alpha)}{\sum_{\beta} \operatorname{count}(A \rightarrow \beta)}$
- count $(A \rightarrow \alpha)=$ the number of times the rule $A \rightarrow \alpha$ has been used in all trees in the corpus

Learning PCFG Probabilities

- A very small treebank:
- S_{1} : [s [np grass] [vp grows]]
- S_{2} : [s [np grass] [vp grows] [ap fast]]
- $\mathrm{S}_{3}:$ [s [np grass] [vp grows] [ap slowly]]
- S_{4} : [s [np bananas] [vp grow]]

■ Rules \& rule probabilities:

- $\mathrm{S} \rightarrow \mathrm{NP}$ VP 2/4
- $\mathrm{S} \rightarrow \mathrm{NP}$ VP AP $2 / 4$
- NP \rightarrow grass 3/4
- ...

Learning PCFG Probabilities

Rule	$P(A \rightarrow \alpha)$	
r_{1}	$S \rightarrow$ NP VP	$2 / 4$
r_{2}	$S \rightarrow$ NP VP AP	$2 / 4$
r_{3}	$N P \rightarrow$ grass	$3 / 4$
r_{4}	$N P \rightarrow$ bananas	$1 / 4$
r_{5}	$V P \rightarrow$ grows	$3 / 4$
r_{6}	$V P \rightarrow$ grow	$1 / 4$
r_{7}	$A P \rightarrow$ fast	$1 / 2$
r_{8}	$A P \rightarrow$ slowly	$1 / 2$

Learning PCFG Probabilities

- Probabilities of the sentences:
- $P\left(S_{1}\right)=P\left(r_{1}\right) \times P\left(r_{3}\right) \times P\left(r_{5}\right)=2 / 4 \times 3 / 4 \times 3 / 4=0.28125$
- $\mathrm{P}\left(\mathrm{S}_{2}\right)=\mathrm{P}\left(\mathrm{r}_{2}\right) \times \mathrm{P}\left(\mathrm{r}_{3}\right) \times \mathrm{P}\left(\mathrm{r}_{5}\right) \times \mathrm{P}\left(\mathrm{r}_{7}\right)=0.140625$
- $P\left(S_{3}\right)=P\left(r_{2}\right) \times P\left(r_{3}\right) \times P\left(r_{5}\right) \times P\left(r_{7}\right)=0.140625$
- $P\left(S_{4}\right)=P\left(r_{1}\right) \times P\left(r_{4}\right) \times P\left(r_{6}\right)=0.03125$

Evaluation

- Coverage: How many sentences are well-formed according to the grammar?
- Accuracy: How many sentences are correctly parsed?
- measured as "relative correctness" wrt. to category label, start and end position (yield) of all constituents (subtrees)
- Labelled precision: percentage of correct subtrees in the parser output
- Labelled recall: percentage of correct subtrees in the gold standard (test corpus)

Evaluation

- Labelled Precision = C / M
- Labelled Recall $=$ C / N
- where
- C = number of correct constituents produced by the parser
- $M=$ total number of constituents produced by the parser
- $\mathrm{N}=$ total number of constituents in reference corpus

Binarization

- Replace rules of the form $A \rightarrow A_{1} A_{2} A_{3} \ldots A_{k}[p]$ by
- $A \rightarrow\left\langle A_{1}, \ldots, A_{k-1}\right\rangle A_{k} \quad[p]$
- $\left\langle A_{1}, \ldots, A_{k-1}\right\rangle \rightarrow A_{1} \ldots A_{k-1} \quad[1.0]$
- ... or binarize trees in the treebank before "reading off" the grammar from the trees.

Problems

- The probability of a (sub) tree is indipendant of
- the context in which the tree occurs
- the node(s) that dominates the tree
- Problems: we want to capture ...

- Lexical dependencies
- Structural dependencies

Lexical Dependencies

- The two trees differ only in one rule:
- VP \rightarrow VP PP
- NP \rightarrow NP PP

workers

Lexical Dependencies

- The two trees differ only in one rule:
- VP \rightarrow VP PP
- NP \rightarrow NP PP
- \Rightarrow the grammar will either
- always prefer the 1st rule (VP attachment) or
- always prefer the 2nd rule (NP-attachment)

■ But ...

- Workers dumped sacks into a bin
- Fishermen caught tons of herring
- \Rightarrow Lexikalized PCFG

Lexical Dependencies

	come	take	think	want
$\mathrm{VP} \rightarrow \mathrm{V}$	$9,5 \%$	$2,6 \%$	$4,6 \%$	$5,7 \%$
$\mathrm{VP} \rightarrow \mathrm{V} \mathrm{NP}$	$1,1 \%$	$32,1 \%$	$0,2 \%$	$13,9 \%$
$\mathrm{VP} \rightarrow \mathrm{V} \mathrm{PP}$	$35,5 \%$	$3,1 \%$	$7,1 \%$	$0,3 \%$
$\mathrm{VP} \rightarrow \mathrm{V}$ SBAR	$6,6 \%$	$0,3 \%$	$73,0 \%$	$0,2 \%$
$\mathrm{VP} \rightarrow \mathrm{V} \mathrm{S}$	$2,2 \%$	$1,3 \%$	$4,8 \%$	$70,8 \%$
$\mathrm{VP} \rightarrow \mathrm{V}$ NP S	$0,1 \%$	$5,7 \%$	$0,0 \%$	$0,3 \%$
$\mathrm{VP} \rightarrow \mathrm{V}$ PRT NP	$0,3 \%$	$5,8 \%$	$0,0 \%$	$0,0 \%$
$\mathrm{VP} \rightarrow \mathrm{V}$ PRT PP	$6,1 \%$	$1,5 \%$	$0,2 \%$	$0,0 \%$
\ldots	\ldots	\ldots	\ldots	\ldots

Structural dependencies

■ Structural independencies:

- The (probability of an) application of a rule is independent of all other rules in the derivation tree
- NP \rightarrow Pronoun vs. NP \rightarrow Det Noun same probabilities for all occurrences of NP
- But ... (Francis \&al, 1999)
- Subject-NP: 91\% pronouns, 9\% non-pronouns
- Object-NP: 34\% pronouns, 66\% non-pronouns
- (Switchboard corpus, spoken language)
- \Rightarrow Parent annotation

Structural dependencies

- Some dependencies can be "built into" the category symbols.

Structural dependencies

- Parent Annotation: nodes are annotated with the label of their parent nodes
- Similar effect compared to conditional probabilities
- P(NP^S \rightarrow PRP)
- P(NP \rightarrow PRP $\mid S$)
- Compare:
- P(NP-SBJ \rightarrow PRP) - no correspondence to conditional probabilities

Structural dependencies

- Parent annotation can also be useful for preterminal nodes
- Most frequent adverbs with parent ...
- ADVP - also, now
- VP - not, n't
- NP - only, just
- Penn Treebank - no distinction (same POS) between
- subordinating conjunctions (while, as, if),
- complementizers (that, for)
- prepositions (of, in, from)

Structural dependencies

- Parent annotation can also be useful for preterminal nodes

Structural dependencies

- Parent annotation - drawbacks
- the grammar gets larger
- fewer training data for each rule
- reduced generalization ("overfitting")

Lexical dependencies

- The head of a constituent is the "central" word of a phrase
- Noun - NP
- Verb - VP, S
- Adjektive - AP
- Preposition - PP

Lexical dependencies

- Lexicalized parsing: annotate nodes with their lexical heads

Lexical dependencies

Rule

$r_{1} \quad S_{\text {dumpled }} \rightarrow N_{\text {workers }} V P_{\text {dumped }} \quad 1 / 1$
r_{2} NP workers \rightarrow NNS $_{\text {workers }} \quad 1 / 1$
$r_{3} \quad \mathrm{NP}_{\text {sacks }} \rightarrow \mathrm{NNS}_{\text {sacks }} \quad 1 / 2$
$r_{4} \quad N P_{\text {sacks }} \rightarrow N P_{\text {sacks }}$ PP into $\quad 1 / 2$
$r_{5} \quad N P_{b i n} \rightarrow D T_{a} N N_{b i n}$
1/1

Lexical dependencies

- Problems:
- this leads to much larger grammars
- its hard to estimate the rule probabilities

Lexicalized parsing

- Complexity (CYK)
- Runtime: O(|rules|n³),
- Wost case: |rules| = |nonterminals| ${ }^{3}$
- Lexicalized grammars
- Worst case: |rules| = |nonterminals| ${ }^{3} \cdot \mid$ terminals $\left.\right|^{2}$
- |terminals| usually much larger than |nonterminals|
- $\Rightarrow \mathrm{O}\left(\mathrm{n}^{5}\right)$ runtime for typical grammars and input sentences

Literature

- Jurafsky \& Martin (2009) Speech and Language Processing Kapitel 14.

■ Manning \& Schütze (1999). Foundations of Statistical Natural Language Processing. Kapitel 11 \& 12.

- Eugene Charniak (1993). Statistical Language Learning. Kapitel 5.

