
Computational Linguistics
Probabilistic Parsing

Clayton Greenberg
Stefan Thater

FR 4.7 Allgemeine Linguistik (Computerlinguistik)
Universität des Saarlandes
Summer 2016

Salespeople sold the dog biscuits

2

! S!→ NP VP! NP!→ NP NP
!VP!→ V NP! NP!→ N
!VP!→ V NP NP! DET!→ the
NP!→ DET N! N!→ dog!
NP!→ DET N N! !…

(Charniak, 1997)

S

NP VP

V

DET N N

NPN

Salespeople sold

the dog biscuits

S

NP VP

V

DET N N

NPN

Salespeople sold

the dog biscuits

NP

S

NP VP

V

DET N N

NP

N

Salespeople sold

the dog biscuits

NP

NP

Ambiguity & Disambiguation

3

■ Probabilistic disambiguation
choose the one that is most derivation tree if the input
sentence is ambiguous (has > 1 derivation trees)

■ We need …
■ a probabilistic model of (contex-free) grammar
■ methods to estimate probabilities

Further Motivation

4

■ Natural language is ambiguous
⇒ disambiguation

■ Grammar development
⇒ automatically induce grammars

■ Efficient search
⇒ compute the most likely parse tree first

■ Robustness

Probabilistic Context-Free Grammars
(PCFG)

■ Probabilistic context-free grammar (PCFG)
■ a context-free grammar ⟨V, Σ, R, S⟩
■ a funktion P assigning a value p ∈ [0, 1] to each rule

■ such that ∑β ∈ V* P(A → β) = 1

■ P(A → β) = the conditional probability that symbol A is
expanded to β
■ Alternative notations: P(β | A), P(A → β | A), A → β [p]

5

Derivation Trees (Recap)

■ Derivarion trees:
■ The root node is labeled with the start symbol S
■ Leaf nodes are labeled with terminal symbols or ε
■ An inner node and their child nodes correspond to the rules

that have been used in the derivation

■ Parsing:
Compute all derivation trees for a given input

■ Probabilistic parsing:
Compute the most likely derivation tree

6

Probabilistic Context-Free Grammar
(PCFG)

■ A PCFG assigns a probability to each derivation tree of a
sentence.

■ The probability of a derivation tree T is defined as
the product of the probabilities of all the rules that have
been used to expand the nodes in T:
■ P(T, w) = P(T) = ∏n∈T P(R(n))
■ R(n) is the rule that has been used to expand node n
■ Note: P(T, w) = P(T) P(w | T) = P(T), because P(w | T) = 1

■ The probability of a sentence w is the sum of the
probabilities of all its derivation trees:
■ P(w) = ΣT P(w, T), for w ∈ L(G)

7

Salespeople sold the dog biscuits

! S!→ NP VP! [1.0]
! VP!→ V NP! [0.8]
! VP!→ V NP NP! [0.2]
! NP!→ DET N! [0.5]
! NP!→ N! [0.3]
! NP!→ DET N N! [0.15]
! NP!→ NP NP! [0.05]
DET!→ the! [1.0]

N!→ Salespeople! [0.55]
N!→ dog! [0.25]
N!→ biscuits! [0.2]
!V!→ sold! [1.0]

(Charniak, 1997)

8

S

NP VP

V

DET N N

NPN

Salespeople sold

the dog biscuits

1.0

0.3 0.8

1.0 0.15

1.0 0.25 0.2

0.55

P(t) =!1.0 ⨉ 0.3 ⨉ 0.55 ⨉
0.8 ⨉ 1.0 ⨉ 0.15 ⨉
1.0 ⨉ 0.25 ⨉ 0.2

! =!9.9 ⨉ 10-4

Salespeople sold the dog biscuits

! S!→ NP VP! [1.0]
! VP!→ V NP! [0.8]
! VP!→ V NP NP! [0.2]
! NP!→ DET N! [0.5]
! NP!→ N! [0.3]
! NP!→ DET N N! [0.15]
! NP!→ NP NP! [0.05]
DET!→ the! [1.0]

N!→ Salespeople! [0.55]
N!→ dog! [0.25]
N!→ biscuits! [0.2]
!V!→ sold! [1.0]

(Charniak, 1997)

9

S

NP VP

V

DET N N

NPN

Salespeople sold

the dog biscuits

NP

1.0

0.3 0.2

0.55 1.0 0.5 0.3

1.0 0.25 0.2

P(t) =!1.0 ⨉ 0.3 ⨉ 0.55 ⨉
0.2 ⨉ 1.0 ⨉ 0.5 ⨉
1.0 ⨉ 0.25 ⨉ 0.3 ⨉ 0.2

! =!2.475 ⨉ 10-4

Salespeople sold the dog biscuits

! S!→ NP VP! [1.0]
! VP!→ V NP! [0.8]
! VP!→ V NP NP! [0.2]
! NP!→ DET N! [0.5]
! NP!→ N! [0.3]
! NP!→ DET N N! [0.15]
! NP!→ NP NP! [0.05]
DET!→ the! [1.0]

N!→ Salespeople! [0.55]
N!→ dog! [0.25]
N!→ biscuits! [0.2]
!V!→ sold! [1.0]

(Charniak, 1997)

10

S

NP VP

V

DET N N

NP

N

Salespeople sold

the dog biscuits

NP

NP

1.0 0.25 0.2

0.55 1.0 0.05

1.0

0.3

0.3

0.8

0.5

P(t) =!1.0 ⨉ 0.3 ⨉ 0.55 ⨉ 0.8 ⨉
1.0 ⨉ 0.05 ⨉ 0.5 ⨉ 1.0 ⨉
0.25 ⨉ 0.3 ⨉ 0.2

! =!4.95 ⨉ 10-5

Probabilistic Context-Free Grammar
(PCFG)

■ The probability of a sentence w is the sum of the
probabilities of all its derivation trees:
■ P(w) = ΣT P(w, T), for w ∈ L(G)

■ A PCFG G is consistent if Σw∈L(G) P(w) = 1

■ Recursion can lead to inconsistent grammars:
■ S → S S! [0.6]
■ S → a! [0.4]

11

An inconsistent PCFG

■ S → S S! [0.6] / [0.4]

■ S → a! [0.4] / [0.6]

■ P(ai) = #trees(ai) ⨉ 0.6i-1 ⨉ 0.4i = 0.4
■ P(a) = 0.4, P(aa) = 0.096, P(aaa) = 0.0461, …

■ P(ai) = #trees(ai) ⨉ 0.4i-1 ⨉ 0.6i = 0.4
■ P(a) = 0.6, P(aa) = 0.144, P(aaa) = 0.06912, …

■ Number of trees (#trees) for ai+1 = i-th Catalan number

12

An inconsistent PCFG

13

0

0,25

0,50

0,75

1,00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S → S S! [0.6] / [0.4]
S → a! [0.4] / [0.6]

input length

Probabilistic Parsing

14

■ Language modelling (“inside probabilities”)
compute the probability that S ⇒* w for an input
sentence w:
■ P(w) = ΣT P(w, T)

■ Probabilistic parsing (“viterbi scores”)
compute the most likely derivation tree T(w) for an input
sentence w:
■ T(w)!= arg maxT P(T | w)

! = arg maxT

! = arg maxT P(T)

P(T, w)
P(w)

Properties of PCFGs

■ The probability of a (sub) tree is indipendant of
■ the context in which the tree occurs
■ the node(s) that dominates the tree

15

Probabilistic CYK Parsing

16

■ Extend the CYK algorithm:
■ T[i, j, A] = the probability that A ⇒* wi+1 … wj

■ Inside probabilities:
■ T[i, j, A] = sum of the probabilities of all derivation trees of

the substring wi+1 … wj

■ Probability of a derivation tree (parsing)
■ T[i, j, A] = the probability of the most likely derivation
■ B[i, j, A] = the corresponding derivation tree

CYK (without probabilities)

function CYK(G, w1 ... wn):
 for i in 1 ... n do
 T[i-1, i] = { A | A → wi ∈ R }
 for j in i - 2 ... 0 do
 T[j, i] = ∅
 for k in j + 1 ... i - 1 do
 T[j, i] = T[j, i] ∪
 { A | A → B C, B ∈ T[j,k], C ∈ T[k, i] }
 done
 done
 done
 if S ∈ T[0, n] then return True else return False

17

CYK (with probabilities)

function CYK(G, w1 ... wn):
 ⟨initialize T and B⟩
 for i in 1 ... n do
 for all nonterminals A in G do
 T[i-1, i, A] = P(A → wi)
 for j in i - 2 ... 0 do
 for k in j + 1 ... i - 1 do
 for all A → B C do
 pr = T[j, k, B] ⨉ T[k, i, C] ⨉ P(A → B C)

 if pr > T[j, i, A] then
 T[j, i, A] = pr
 B[j, i, A] = ⟨construct subtree⟩
 return ⟨B[0, n, S] and T[0, n, S]⟩

18

Learning PCFG Probabilities

■ Option #1
count frequencies of rules in syntactically annotated
treebanks (such as the Penn Treebank)

■ Option #2
Inside-outside algorithm (not discussed here)

19

Learning PCFG Probabilities

■ We are given a syntactically annotated corpus
■ annotated corpus = a set of derivation trees

■ We can construct a grammar from the treebank by
identifying the rules with all “subtrees” of height 1

■ Estimating rule probabilities:

■ P(A → α) =

■ count(A → α) = the number of times the rule A → α has
been used in all trees in the corpus

20

count(A → α)

Σβ count(A → β)

Learning PCFG Probabilities

■ A very small treebank:
■ S1: [S [NP grass] [VP grows]]
■ S2: [S [NP grass] [VP grows] [AP fast]]
■ S3: [S [NP grass] [VP grows] [AP slowly]]
■ S4: [S [NP bananas] [VP grow]]

■ Rules & rule probabilities:
■ S → NP VP! 2/4
■ S → NP VP AP! 2/4
■ NP → grass! 3/4
■ …

21

(Example: Webber/Keller)

Learning PCFG Probabilities

22

RuleRule P(A → α)

r1 ! S!→ NP VP 2/4

r2 ! S!→ NP VP AP 2/4

r3 !NP!→ grass 3/4

r4 !NP!→ bananas 1/4

r5 !VP!→ grows 3/4

r6 !VP!→ grow 1/4

r7 !AP!→ fast 1/2

r8 !AP!→ slowly 1/2

Learning PCFG Probabilities

■ Probabilities of the sentences:
■ P(S1) = P(r1) ⨉ P(r3) ⨉ P(r5) = 2/4 ⨉ 3/4 ⨉ 3/4 = 0.28125
■ P(S2) = P(r2) ⨉ P(r3) ⨉ P(r5) ⨉ P(r7) = 0.140625

■ P(S3) = P(r2) ⨉ P(r3) ⨉ P(r5) ⨉ P(r7) = 0.140625
■ P(S4) = P(r1) ⨉ P(r4) ⨉ P(r6) = 0.03125

23

Evaluation

■ Coverage: How many sentences are well-formed
according to the grammar?

■ Accuracy: How many sentences are correctly parsed?
■ measured as “relative correctness” wrt. to category label,

start and end position (yield) of all constituents (subtrees)
■ Labelled precision: percentage of correct subtrees in the

parser output
■ Labelled recall: percentage of correct subtrees in the

gold standard (test corpus)

24

Evaluation

■ Labelled Precision = C / M

■ Labelled Recall = C / N

■ where
■ C = number of correct constituents produced by the parser
■ M = total number of constituents produced by the parser
■ N = total number of constituents in reference corpus

25

Binarization

26

■ Replace rules of the form A → A1 A2 A3 … Ak [p] by
■ A → ⟨A1,…,Ak-1⟩ Ak! ! ! [p]
■ ⟨A1,…,Ak-1⟩ → A1 … Ak-1! [1.0]

■ … or binarize trees in the treebank before “reading off”
the grammar from the trees.

Problems

■ The probability of a (sub) tree is indipendant of
■ the context in which the tree occurs
■ the node(s) that dominates the tree

■ Problems: we want to capture …
■ Lexical dependencies
■ Structural dependencies

27

T

Lexical Dependencies

■ The two trees differ only in one rule:
■ VP → VP PP
■ NP → NP PP

28

S

NP VP

V

NP PP

NP

dumped

sacks
NPP

into
a bin

workers

S

NP

VP

V NP

PP

dumped
sacks

NPP

into
a bin

workers

VP

Lexical Dependencies

■ The two trees differ only in one rule:
■ VP → VP PP
■ NP → NP PP

■ ⇒ the grammar will either
■ always prefer the 1st rule (VP attachment) or
■ always prefer the 2nd rule (NP-attachment)

■ But …
■ Workers dumped sacks into a bin
■ Fishermen caught tons of herring

■ ⇒ Lexikalized PCFG

29

Lexical Dependencies

30

come take think want

 VP → V 9,5% 2,6% 4,6% 5,7%

 VP → V NP 1,1% 32,1% 0,2% 13,9%

 VP → V PP 35,5% 3,1% 7,1% 0,3%

 VP → V SBAR 6,6% 0,3% 73,0% 0,2%

 VP → V S 2,2% 1,3% 4,8% 70,8%

 VP → V NP S 0,1% 5,7% 0,0% 0,3%

 VP → V PRT NP 0,3% 5,8% 0,0% 0,0%

 VP → V PRT PP 6,1% 1,5% 0,2% 0,0%

 … … … … …

(Manning & Schütze)

Structural dependencies

■ Structural independencies:
■ The (probability of an) application of a rule is independent

of all other rules in the derivation tree
■ NP → Pronoun vs. NP → Det Noun

same probabilities for all occurrences of NP

■ But … (Francis &al, 1999)
■ Subject-NP: 91% pronouns, 9% non-pronouns
■ Object-NP: 34% pronouns, 66% non-pronouns
■ (Switchboard corpus, spoken language)

■ ⇒ Parent annotation

31

Structural dependencies

■ Some dependencies can be “built into” the category
symbols.

32

S

NP

VBD

need

NP

NNDT

a flight

I

VP

PRP

S

NP-SBJ

VBD

need

NP

NNDT

a flight

I

VP

PRP

S∧ROOT

NP∧S

VBD

need

NP∧VP

NNDT

a flight

I

VP∧S

PRP

Structural dependencies

■ Parent Annotation: nodes are annotated with the
label of their parent nodes

■ Similar effect compared to
conditional probabilities
■ P(NP∧S → PRP)
■ P(NP → PRP | S)

■ Compare:
■ P(NP-SBJ → PRP) – no correspondence to conditional

probabilities

33

S∧ROOT

NP∧S

VBD

need

NP∧VP

NNDT

a flight

I

VP∧S

PRP

Structural dependencies

■ Parent annotation can also be useful for preterminal
nodes

■ Most frequent adverbs with parent …
■ ADVP – also, now
■ VP – not, n’t
■ NP – only, just

■ Penn Treebank – no distinction (same POS) between
■ subordinating conjunctions (while, as, if),
■ complementizers (that, for)
■ prepositions (of, in, from)

34

Structural dependencies

■ Parent annotation can also be useful for preterminal
nodes

35

VP∧S

TO

VBD

see

PP∧VP

NP∧PPIN

if NN

VP∧VP

to

NNS

advertising works

VP∧S

TO∧VP

VBD∧VP

see

SBAR∧VP

S∧SBARIN∧SBAR

if NP∧S

VP∧VP

to

VP∧S

NN∧NP VBZ∧VP

advertising works

Structural dependencies

■ Parent annotation – drawbacks
■ the grammar gets larger
■ fewer training data for each rule
■ reduced generalization (“overfitting”)

36

Lexical dependencies

■ The head of a constituent is the “central” word of a
phrase
■ Noun – NP
■ Verb – VP, S
■ Adjektive – AP
■ Preposition – PP

37

Lexical dependencies

■ Lexicalized parsing: annotate nodes with their lexical
heads

38

Sdumped

NPworkers VPdumped

Vdumped

NPsacks PPinto

NPsacks

dumped

sacks

NPbinPinto

into

a

workers

NNSworkers

NNSsacks

DETa NNbin

bin

Lexical dependencies

39

RuleRule P(A → α)

r1 ! Sdumpled!→ NPworkers VPdumped 1/1

r2 ! NPworkers!→ NNSworkers 1/1

r3 ! NPsacks!→ NNSsacks 1/2

r4 ! NPsacks!→ NPsacks PPinto 1/2

r5 ! NPbin!→ DTa NNbin 1/1

… ! !… …

Lexical dependencies

■ Problems:
■ this leads to much larger grammars
■ its hard to estimate the rule probabilities

40

Lexicalized parsing

■ Complexity (CYK)
■ Runtime: O(|rules|n3),
■ Wost case: |rules| = |nonterminals|3

■ Lexicalized grammars
■ Worst case: |rules| = |nonterminals|3 · |terminals|2

■ |terminals| usually much larger than |nonterminals|
■ ⇒ O(n5) runtime for typical grammars and input sentences

41

Literature

42

■ Jurafsky & Martin (2009) Speech and Language
Processing Kapitel 14.

■ Manning & Schütze (1999). Foundations of Statistical
Natural Language Processing. Kapitel 11 & 12.

■ Eugene Charniak (1993). Statistical Language Learning.
Kapitel 5.

