Computational Linguistics Lecture 4 – Parsing

Clayton Greenberg Stefan Thater

FR 4.7 Allgemeine Linguistik (Computerlinguistik)
Universität des Saarlandes
Summer 2016

EXAM DATE

Thursday, 2016-07-28, 8:00 - 10:00

Grammars

Grammars generate sentences ("words")

 $S \rightarrow NP VP$

DET → the

NP → DET N

 $DET \rightarrow a$

 $NP \rightarrow NP PP$

 $N \rightarrow student$

 $PP \rightarrow P NP$

 $N \rightarrow book$

 $VP \rightarrow V$

N → *library*

 $VP \rightarrow V NP$

 $V \rightarrow works$

VP → VP PP

V → reads

 $P \rightarrow in$

The student works

The student works in the library

The student reads a book

The student reads a book in the library

[...]

Context-free Grammars

- Context-free grammar G = (N, T, R, S)
 - Nonterminal symbols N
 - Terminal symbols T
 - Start symbol $S \in N$
 - Finite set of production rules: $R \subseteq N \times (N \cup T)^*$

Derivations

- Let x, y, u, v, w, $z \in (N \cup T)^*$
- We write $x \Rightarrow_G y$ iff
 - x = uvw
 - y = uzw
 - $V \rightarrow Z \in R$
- Derivation of w_n from w₀:
 - \blacksquare $W_0 \Rightarrow_G W_1 \Rightarrow_G \cdots \Rightarrow_G W_n$
- Language generated by G = (N, T, R, S)
 - $L(G) = \{ w \mid S \Rightarrow_G^* w \}$
 - $\blacksquare \Rightarrow_{G}^{*}$ is the reflexive, transitive closure of \Rightarrow_{G}

An Example

```
S \Rightarrow_G NP VP
```

- ⇒_G DET N VP
- \Rightarrow_G the N VP
- \Rightarrow_G the student VP
- \Rightarrow_G the student V
- \Rightarrow_G the student works

$$S \rightarrow NP \ VP$$
 DET $\rightarrow the$
 $NP \rightarrow DET \ N$ DET $\rightarrow a$
 $NP \rightarrow NP \ PP$ $N \rightarrow student$
 $PP \rightarrow P \ NP$ $N \rightarrow book$
 $VP \rightarrow V$ $N \rightarrow library$
 $VP \rightarrow V \ NP$ $V \rightarrow works$
 $VP \rightarrow VP \ PP$ $V \rightarrow reads$
 $P \rightarrow in$

"the student works" \in L(G)

Another Example

 $S \Rightarrow_G NP VP$

 $\Rightarrow_{\mathsf{G}} \mathsf{NP} \mathsf{V}$

 \Rightarrow_G NP works

⇒_G DET N works

 \Rightarrow_G the N works

 \Rightarrow_G the student works

 $S \rightarrow NP \ VP$ DET $\rightarrow the$ $NP \rightarrow DET \ N$ DET $\rightarrow a$ $NP \rightarrow NP \ PP$ $N \rightarrow student$ $PP \rightarrow P \ NP$ $N \rightarrow book$ $VP \rightarrow V$ $N \rightarrow library$ $VP \rightarrow V \ NP$ $V \rightarrow works$ $VP \rightarrow VP \ PP$ $V \rightarrow reads$ $P \rightarrow in$

"the student works" \in L(G)

Parse trees

- Context-free grammar G = (N, T, R, S)
- Parse trees are trees where
 - inner nodes are labeled with symbols \in N
 - leaf nodes are labeled with symbols $\in T \cup \{\epsilon\}$
 - if v is a node with label A and its child nodes v_1 , ..., v_n are labeled with A_1 , ..., A_n , then $A \rightarrow A_1$... A_1 is a rule of G
 - if v is a leaf node with label ε, then v is the only child of its parent node

Leftmost derivation

- Leftmost derivation: replace the leftmost nonterminal symbol in each step of the derivation
- $x \Rightarrow_L y$ iff there are $A \in N$, $a, b \in (N \cup T)^*$, $w \in T^*$ such that
 - $\mathbf{x} = \mathbf{w} \mathbf{A} \mathbf{b}$
 - y = wab
 - \blacksquare A \rightarrow a \in R
- Rightmost derivation: analogously

Theorem (Lewis & Papadimitriou)

- Let G = (N, T, R, S) be a context-free grammar
- The following statements are equivalent
 - \blacksquare A \Rightarrow *_G W = W₁ ... W_n
 - There is a parse tree with root A and yield w
 - There is a leftmost derivation A ⇒_L* w
 - There is a rightmost derivation $A \Rightarrow_{R} * w$

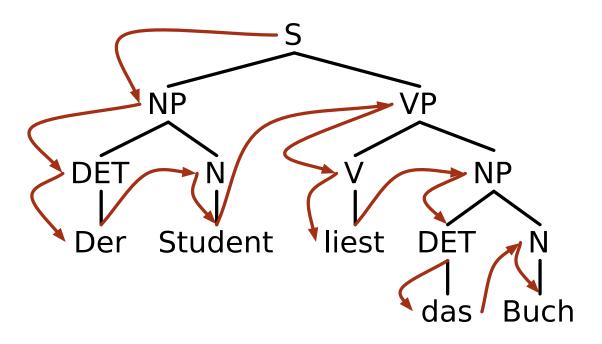
Ambiguity

- $\mathbf{w} = \mathbf{w}_1 \dots \mathbf{w}_n$ may have two or more parse trees.
- The grammar is said to be ambiguous in this case.
- Otherwise, we say that the grammar is unambiguous.

Recognizer & Parser

Recognizer

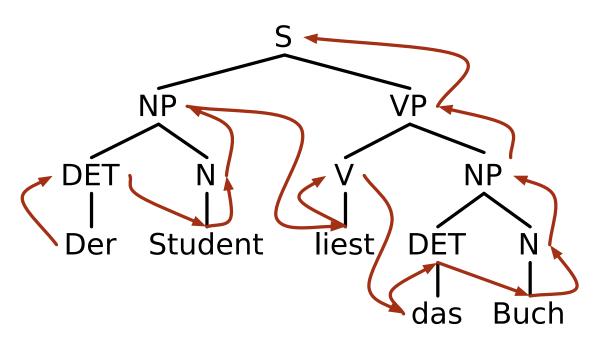
■ Is $w = w_1 ... w_n \in L(G)$?


Parser

• What are the parse trees of $w = w_1 \dots w_n$?

Basic Parsing Strategies

■ A top-down parser / recognizer ...


- starts with the start symbol (= root node)
- applies production rules "from left to right"
- and tries to match the input sequence

Basic Parsing Strategies

■ A bottom-up parser / recognizer ...

- starts with the input sequence (= leaf nodes)
- scans the input for subsequences that match the righthand side of some rule and applies it "from right to left"

Shift-Reduce Parsing (Bottom-up)

Initial configuration for input sequence w₁ ... w_n:

- ⟨[S], []⟩
- In each step we can perform ...
 - shift move a symbol to the stack
 - reduce apply a matching rule to the topmost elements on the stack

Shift

- The shift operation moves one symbol to the stack
- Configuration:
 - $([A_1, ..., A_k], [w_i, w_{i+1}, ..., w_n])$
- New configuration:
 - $\langle [A_1, ..., A_k, w_i], [w_{i+1}, ..., w_n] \rangle$

Reduce

- Reduce replaces the topmost symbols on the stack by the lefthand side of a matching rule
- Configuration:
 - $([A_1, ..., A_{j-1}, A_j, ..., A_k], [w_i, ..., w_n])$
- Rule:
 - B \rightarrow A_i, ..., A_k
- New Configuration:
 - \blacksquare $\langle [A_1, ..., A_{j-1}, B], [w_i, ..., w_n] \rangle$

An Example

```
([], [the student works])
 \Rightarrow_{shift} \langle [the], [student works] \rangle
  \Rightarrow_{\text{red}} \langle [DET], [student works] \rangle
  \Rightarrow_{shift} \langle [DET student], [works] \rangle
  \Rightarrow_{\text{red}} \langle [\text{DET N}], [works] \rangle
  \Rightarrow_{\text{red}} \langle [NP], [works] \rangle
  \Rightarrow_{\text{shift}} \langle [NP works], [] \rangle
                \langle [NP V], [] \rangle
  \Rightarrow_{\mathsf{red}}
 \Rightarrow_{\text{red}} \langle [\text{NP VP}], [] \rangle
  \Rightarrow_{\text{red}} \langle [S], [] \rangle
```

 $S \rightarrow NP \ VP \ DET \rightarrow the$ $NP \rightarrow DET \ N \ DET \rightarrow a$ $NP \rightarrow NP \ PP \ N \rightarrow student$ $PP \rightarrow P \ NP \ N \rightarrow book$ $VP \rightarrow V \ N \rightarrow library$ $VP \rightarrow V \ NP \ V \rightarrow works$ $VP \rightarrow VP \ PP \ V \rightarrow reads$ $P \rightarrow in$

Shift or Reduce?

- How can we decide whether we should perform a shift or a reduce operation?
 - For certain (unamabiguous) grammars, it is possible to decide this automatically
 - In general ⇒ Search

Python

```
def recognize(sent):
    agenda = [([], sent)]
    while agenda:
        (stack, sent) = agenda.pop()
        if sent == [] and stack == ['S']:
            return True
        if sntnc != []:
            agenda.append(shift(stack, sent))
        for (lhs, rhs) in rules:
            if len(stack) >= len(rhs):
                if matches(stack, rhs):
                    agenda.append(reduce(stack, sent, lhs, rhs))
    return False
```

Python

```
rules = [( 'S', ['NP', 'VP']), ('NP', ['DET', 'N']), ...]
def shift(stack, sent):
   return (stack + [sent[0]], sent[1:])
def reduce(stack, sent, lhs, rhs):
   return (stack[:-len(rhs)] + [lhs], sent)
def matches(stack, rhs):
    for (s, r) in zip(stack[-len(rhs):], rhs):
        if s != r:
            return False
    return True
```

Example - The student works

	(stack, sent)	agenda
1	-	<[] [the student works]>
2	<[] [the student works]>	<[the] [student works]>
3	<[the] [student works]>	<[DET] [student works]> <[the student] [works]>
4	⟨[DET] [student works]⟩	<[DET student] [works]> <[the student] [works]>
5	⟨[DET student] [works]⟩	⟨[DET N] [works]⟩ ⟨[DET student works] []⟩ ⟨[the student] [works]⟩
6	⟨[DET N] [works]⟩	⟨[NP] [works]⟩ ⟨[DET N works] []⟩ ⟨[DET student works] []⟩
7	⟨[NP] [works]⟩	⟨[NP works] []⟩ ⟨[DET N works] []⟩ ⟨[DET student works] []⟩
8	⟨[NP works] []⟩	⟨[NP V] []⟩ ⟨[DET N works] []⟩ ⟨[DET student works] []⟩
9	⟨[NP V] []⟩	⟨[NP VP] []⟩ ⟨[DET N works] []⟩ ⟨[DET student works] []⟩
10	⟨[NP VP] []⟩	⟨[S] []⟩ ⟨[DET N works] []⟩ ⟨[DET student works] []⟩
11	⟨[S] []⟩	⟨[DET N works] []⟩ ⟨[DET student works] []⟩

Example - The student reads ...

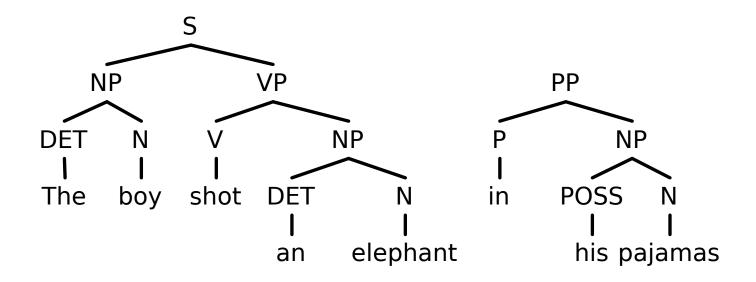
[⇒ Handout]

Problematic Rules

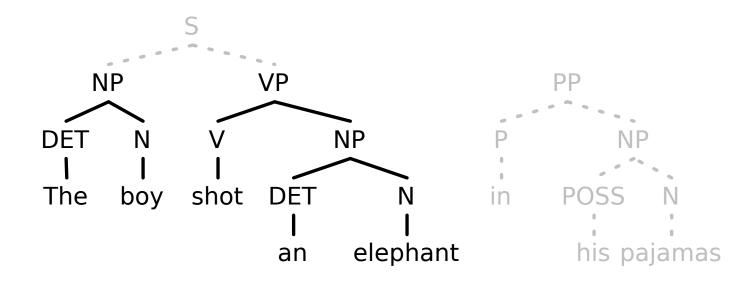
- Bottom-up parsers cannot deal with certain types of grammars (the parser may not terminate)
- Rules of the form A → ε

```
\langle [A_1, ..., A_k], [w_i, ..., w_n] \rangle
```

- \blacksquare $\langle [A_1, ..., A_k, A], [w_i, ..., w_n] \rangle$ (reduce)
- $([A_1, ..., A_k, A, A], [w_i, ..., w_n])$ (reduce)
- \blacksquare $\{[A_1, ..., A_k, A, A, A], [w_i, ..., w_n]\}$ (reduce)
- **...**]

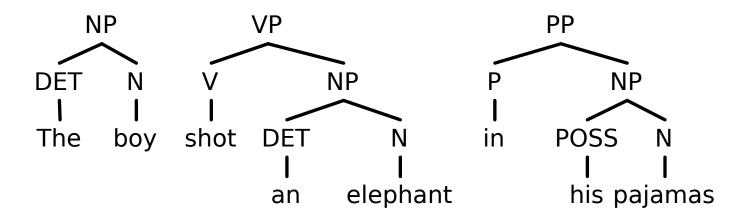

Problematic Rules

- Bottom-up parsers cannot deal with certain types of grammars (the parser may not terminate)
- Cyclic rules: $A \rightarrow B$, $B \rightarrow A$
 - $\langle [A_1, ..., A_k, A], [w_i, ..., w_n] \rangle$
 - \blacksquare $\{[A_1, ..., A_k, B], [w_i, ..., w_n]\}$ (reduce)
 - $([A_1, ..., A_k, A], [w_i, ..., w_n])$ (reduce)
 - \blacksquare $\langle [A_1, ..., A_k, B], [w_i, ..., w_n] \rangle$ (reduce)
 - **...**]


Another Problem ...

```
([], [the boy shot an elephant in his pajamas])
```

- ⇒* ⟨[NP VP], [in his pajamas]⟩
- $\Rightarrow \langle [S], [in his pajamas] \rangle$
- ⇒* ([S PP], []) ⇒ Failure, Backtracking


⟨[], [the boy shot an elephant in his pajamas]⟩
⇒* ⟨[NP VP], [in his pajamas]⟩

⟨[], [the boy shot an elephant in his pajamas]⟩

⇒* ⟨[NP VP], [in his pajamas]⟩

⇒* ⟨[NP VP PP], []⟩

([], [the boy shot an elephant in his pajamas])

```
\Rightarrow^* \langle [NP VP], [in his pajamas] \rangle
\Rightarrow^* \langle [NP \ VP \ PP], [] \rangle
\Rightarrow^* \langle [NP VP], [] \rangle
⇒* ⟨[S], []⟩
                                                 S
                              NP
                                                               VP
                                               VP
                                                                                 PP
                        DET
                                 boy
                        The
                                                                                         NP
                                                        NP
                                                                                  POSS
                                       shot
                                                                          in
                                                DET
                                                               Ν
                                                                                              Ν
                                                          elephant
                                                                                    his pajamas
                                                 an
```

Dynamic Programming

Context-free grammar: whether or not a rule can be applied does not depend on the context.

```
The boy shot an elephant in his pajamas
```

- Chart-Parsing: store intermediate results for already analysed constituents in a "chart"
- Charts are compact representations of all possible analyses ("parse forest")

Chart-Parsing

- Chart-Parsing: store intermediate results for already analysed constituents in a "chart"
- Charts are compact representations of all possible analyses ("parse forest")
- Charts can contain
 - complete constituents
 - hypotheses for possible constituents
- Many different chart-parsers:
 - Cocke-Younger-Kasami, Earley, ...

Charts as Matrices

■ $A \in T[i, j]$ iff $A \Rightarrow^* W_{i+1} ... W_j$

_		_			
1	DET		_		
2	NP	N		_	
3	Ø	Ø	V		_
4	Ø	Ø	Ø	DET	
5	S	Ø	VP	NP	N
	, and the second				

VP

3

4

Ø

Ø

6

7

8

0

Ø

S

ND DET N DET
$NP \rightarrow DET N DET \rightarrow an$
$NP \rightarrow POSS N N \rightarrow boy$
$NP \rightarrow NP PP$ $N \rightarrow elephant$
$PP \rightarrow P NP \qquad N \rightarrow pajamas$
$VP \rightarrow V NP \qquad V \rightarrow shot$
$VP \rightarrow VP PP \qquad P \rightarrow in$
POSS → his

6

Cocke-Younger-Kasami

- The algorithm by Cocke, Younger, Kasami (CYK) is a simple chart-based bottom-up parser
- Restriction: the algorithm can be applied to grammars in Chomsky normal form only:

```
    A → w (w terminal symbol)
    A → B C (B and C nonterminal symbols)
    S → ε (S start symbol, only if ε ∈ L)
```

■ Note: we will assume here that $\varepsilon \notin L$, thus the grammar will not contain rules $S \to \varepsilon$

CYK (Recognizer, Pseudo-code)

```
function CYK(G, W_1 \ldots W_n):
   for i in 1 ... n do
       T[i-1, i] = \{ A \mid A \rightarrow W_i \in R \}
       for j in i - 2 ... 0 do
          T[j, i] = \emptyset
           for k in j + 1 ... i - 1 do
              T[j, i] = T[j, i] \cup
                  \{A \mid A \rightarrow B C, B \in T[j,k], C \in T[k, i] \}
          done
       done
   done
   if S ∈ T[0, n] then return True else return False
```

An Example

[⇒ blackboard]

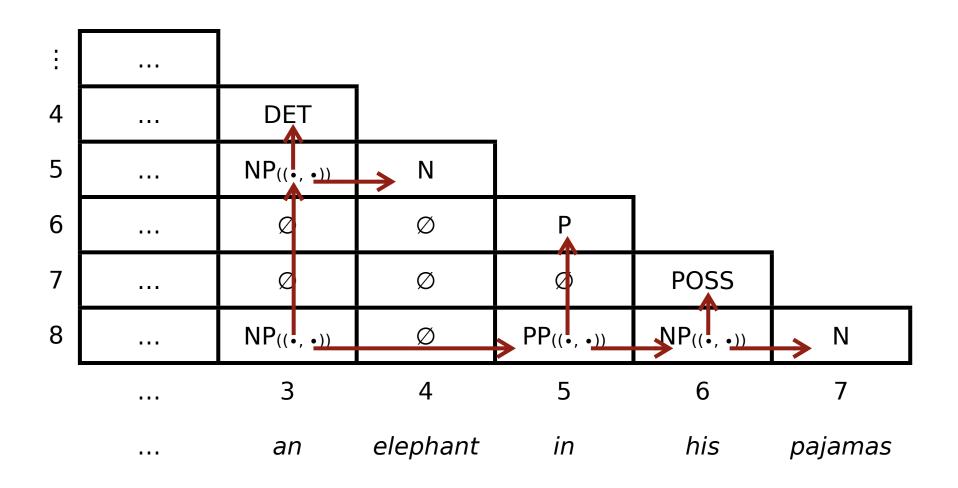
Properties

■ Correct:

If $S \in T[0, n]$, then $S \Rightarrow^* w_1 \dots w_n$

Complete:

If $S \Rightarrow^* w_1 \dots w_n$, then $S \in T[0, n]$


Runtime:

Polynomial in the input length: O(n³)

Recognizer → Parser

The recognizer can be extended to a parser if we store, for each category A, a list of pointers to other entries in the chart that have been used to derive A

CYK (Parser)

Binarization

left binarization(G):

```
while G contains rules A \rightarrow A_1 \ A_2 \ A_3 \dots A_k, \ k \geq 3
delete the rule from G
add rule \langle A_1, \dots, A_{k-1} \rangle \rightarrow A_1 \dots A_{k-1}
add rule A \rightarrow \langle A_1, \dots, A_{k-1} \rangle A_k
```

right binarization(G):

```
while G contains rules A \rightarrow A_1 \ A_2 \ A_3 \dots A_k, \ k \geq 3
delete the rule from G
add rule \langle A_2, \dots, A_k \rangle \rightarrow A_2 \dots A_k
add rule A \rightarrow A_1 \ \langle A_2, \dots, A_k \rangle
```

Implementation variants

- $T[i,j] = T[i,j] \cup \{ A \mid A \rightarrow B C, B \in T[i,k], C \in T[k,j] \}$
 - ⇒ can be implemented in different ways

Method 1

- Iterate over all rules A → B C
- Check if $B \in T[i,k]$ and $C \in T[k,j]$

Method 2

- Iterate over all B ∈ T[i,k]
- Iterate over all rules A → B C
- Check if $C \in T[k, j]$

Implementierungsvarianten

- $T[i,j] = T[i,j] \cup \{ A \mid A \rightarrow B C, B \in T[i,k], C \in T[k,j] \}$
 - ⇒ can be implemented in different ways

Method 3

- Iterate over all $C \in T[k,j]$
- Iterate over all rules A → B C
- Check if $A \in T[i,k]$

Method 4

- Iterate over all $B \in T[i,k]$ and $C \in T[k,j]$
- Check if a rule A → B C exists

Song &al. (EMNLP 2008)

- Experiments mit CYK & Wall Street Journal
- Runtime depends on ...
 - right binarization ⇒ method 3 is most efficient
 - left binarization ⇒ method 2 is most efficient