Computational Linguistics Lecture 4 - Parsing

Clayton Greenberg
Stefan Thater

FR 4.7 Allgemeine Linguistik (Computerlinguistik)
Universität des Saarlandes
Summer 2016

EXAM DATE

- Thursday, 2016-07-28, 8:00-10:00

Grammars

- Grammars generate sentences ("words")

$$
\begin{array}{rlrl}
\mathrm{S} & \rightarrow \mathrm{NP} \text { VP } & \mathrm{DET} & \rightarrow \text { the } \\
\mathrm{NP} & \rightarrow \text { DET N } & \mathrm{DET} & \rightarrow \text { a } \\
\mathrm{NP} & \rightarrow \mathrm{NP} \mathrm{PP} & \mathrm{~N} & \rightarrow \text { student } \\
\mathrm{PP} & \rightarrow \mathrm{P} \text { NP } & \mathrm{N} & \rightarrow \text { book } \\
\mathrm{VP} & \rightarrow \mathrm{~V} & \mathrm{~N} & \rightarrow \text { library } \\
\mathrm{VP} & \rightarrow \mathrm{~V} \text { NP } & \mathrm{V} & \rightarrow \text { works } \\
\mathrm{VP} & \rightarrow \mathrm{VP} \text { PP } & \mathrm{V} & \rightarrow \text { reads } \\
& \mathrm{P} & \rightarrow \text { in }
\end{array}
$$

The student works

The student works in the library
The student reads a book
The student reads a book in the library
[...]

Context-free Grammars

- Context-free grammar $G=\langle\mathrm{N}, \mathrm{T}, \mathrm{R}, \mathrm{S}\rangle$
- Nonterminal symbols N
- Terminal symbols T
- Start symbol $S \in N$
- Finite set of production rules: $\mathrm{R} \subseteq \mathrm{N} \times(\mathrm{N} \cup \mathrm{T})^{*}$

Derivations

- Let $x, y, u, v, w, z \in(N \cup T)^{*}$
- We write $x \Rightarrow_{\mathrm{G}} \mathrm{y}$ iff
- $\mathrm{x}=\mathrm{uvw}$
- $\mathrm{y}=\mathrm{uzw}$
- $v \rightarrow z \in R$
- Derivation of \mathbf{w}_{n} from w_{0} :
- $\mathrm{W} 0 \Rightarrow_{\mathrm{G}} \mathrm{W}_{1} \Rightarrow{ }_{\mathrm{G}} \cdots \Rightarrow_{\mathrm{G}} \mathrm{W}_{\mathrm{n}}$
- Language generated by $\mathbf{G}=\langle\mathbf{N}, \mathbf{T}, \mathrm{R}, \mathrm{S}\rangle$
- $\mathrm{L}(\mathrm{G})=\left\{\mathrm{w} \mid \mathrm{S} \Rightarrow_{\mathrm{G}}^{*} \mathrm{w}\right\}$
- $\Rightarrow G^{*}$ is the reflexive, transitive closure of $\Rightarrow G$

An Example

$$
\begin{aligned}
S & \Rightarrow_{G} \quad \text { NP VP } \\
& \Rightarrow_{G} \quad \text { DET N VP } \\
& \Rightarrow_{G} \text { the N VP }
\end{aligned}
$$

$\Rightarrow G$ the student VP
$\Rightarrow \mathrm{G}$ the student V
$\Rightarrow G$ the student works

$$
\begin{array}{rlrl}
\mathrm{S} & \rightarrow \mathrm{NP} \mathrm{VP} & \mathrm{DET} & \rightarrow \text { the } \\
\mathrm{NP} & \rightarrow \mathrm{DET} \mathrm{~N} & \mathrm{DET} & \rightarrow \text { a } \\
\mathrm{NP} & \rightarrow \mathrm{NP} \mathrm{PP} & \mathrm{~N} & \rightarrow \text { student } \\
\mathrm{PP} & \rightarrow \mathrm{P} \mathrm{NP} & \mathrm{~N} & \rightarrow \text { book } \\
\mathrm{VP} & \rightarrow \mathrm{~V} & \mathrm{~N} & \rightarrow \text { library } \\
\mathrm{VP} & \rightarrow \mathrm{~V} \text { NP } & \mathrm{V} & \rightarrow \text { works } \\
\mathrm{VP} & \rightarrow \mathrm{VP} \text { PP } & \mathrm{V} & \rightarrow \text { reads } \\
& & \mathrm{P} & \rightarrow \text { in }
\end{array}
$$

"the student works" $\in \mathrm{L}(\mathrm{G})$

Another Example

$$
\begin{aligned}
\mathrm{S} & \Rightarrow_{\mathrm{G}} \quad \text { NP VP } \\
& \Rightarrow_{\mathrm{G}} \quad \text { NP V } \\
& \Rightarrow_{\mathrm{G}} \text { NP works } \\
& \Rightarrow_{\mathrm{G}} \text { DET N works } \\
& \Rightarrow_{\mathrm{G}} \text { the N works } \\
& \Rightarrow_{\mathrm{G}} \text { the student works }
\end{aligned}
$$

"the student works" $\in \mathrm{L}(\mathrm{G})$

$$
\begin{array}{rlrl}
\mathrm{S} & \rightarrow \mathrm{NP} \mathrm{VP} & \mathrm{DET} & \rightarrow \text { the } \\
\mathrm{NP} & \rightarrow \mathrm{DET} \mathrm{~N} & \mathrm{DET} & \rightarrow \text { a } \\
\mathrm{NP} & \rightarrow \mathrm{NP} \mathrm{PP} & \mathrm{~N} & \rightarrow \text { student } \\
\mathrm{PP} & \rightarrow \mathrm{P} \mathrm{NP} & \mathrm{~N} & \rightarrow \text { book } \\
\mathrm{VP} & \rightarrow \mathrm{~V} & \mathrm{~N} & \rightarrow \text { library } \\
\mathrm{VP} & \rightarrow \mathrm{~V} \text { NP } & \mathrm{V} & \rightarrow \text { works } \\
\mathrm{VP} & \rightarrow \mathrm{VP} \text { PP } & \mathrm{V} & \rightarrow \text { reads } \\
& & \mathrm{P} & \rightarrow \text { in }
\end{array}
$$

Parse trees

- Context-free grammar $\mathrm{G}=\langle\mathrm{N}, \mathrm{T}, \mathrm{R}, \mathrm{S}\rangle$
- Parse trees are trees where
- inner nodes are labeled with symbols $\in N$
- leaf nodes are labeled with symbols $\in T \cup\{\varepsilon\}$
- if v is a node with label A and its child nodes v_{1}, \ldots, v_{n} are labeled with A_{1}, \ldots, A_{n}, then $A \rightarrow A_{1} \ldots A_{1}$ is a rule of G
- if v is a leaf node with label ε, then v is the only child of its parent node

Leftmost derivation

- Leftmost derivation: replace the leftmost nonterminal symbol in each step of the derivation
- $x \Rightarrow$ l y iff there are $A \in N, a, b \in(N \cup T)^{*}, w \in T^{*}$ such that
- $x=w A b$
- $y=w a b$
- $A \rightarrow a \in R$

■ Rightmost derivation: analogously

Theorem (Lewis \& Papadimitriou)

- Let $\mathrm{G}=\langle\mathrm{N}, \mathrm{T}, \mathrm{R}, \mathrm{S}\rangle$ be a context-free grammar
- The following statements are equivalent
- $A \Rightarrow{ }^{*}{ }_{\mathrm{G}} \mathrm{w}=\mathrm{W}_{1} \ldots \mathrm{~W}_{\mathrm{n}}$
- There is a parse tree with root A and yield w
- There is a leftmost derivation $A \Rightarrow L^{*} w$
- There is a rightmost derivation $A \Rightarrow R^{*}$ w

Ambiguity

- $\mathrm{w}=\mathrm{w}_{1} \ldots \mathrm{w}_{\mathrm{n}}$ may have two or more parse trees.
- The grammar is said to be ambiguous in this case.
- Otherwise, we say that the grammar is unambiguous.

Recognizer \& Parser

- Recognizer
- Is $w=w_{1} \ldots w_{n} \in L(G)$?
- Parser
- What are the parse trees of $w=w_{1} \ldots w_{n}$?

Basic Parsing Strategies

- A top-down parser / recognizer ...
- starts with the start symbol (= root node)
- applies production rules "from left to right"
- and tries to match the input sequence

Basic Parsing Strategies

- A bottom-up parser / recognizer ...

- starts with the input sequence (= leaf nodes)
- scans the input for subsequences that match the righthand side of some rule and applies it "from right to left"

Shift-Reduce Parsing (Bottom-up)

- Initial configuration for input sequence $\mathrm{w}_{1} \ldots \mathrm{w}_{\mathrm{n}}$:
- $\left\langle[],\left[w_{1}, \ldots, w_{n}\right]\right\rangle$ the input that still needs to be processed
stack Accepting configuration
- 〈[S], []〉
- In each step we can perform ...
- shift - move a symbol to the stack
- reduce - apply a matching rule to the topmost elements on the stack

Shift

- The shift operation moves one symbol to the stack
- Configuration:
- 〈[$\left.\left.A_{1}, \ldots, A_{k}\right],\left[w_{i}, w_{i+1}, \ldots, w_{n}\right]\right\rangle$
- New configuration:
- $\left\langle\left[A_{1}, \ldots, A_{k}, w_{i}\right],\left[w_{i+1}, \ldots, w_{n}\right]\right\rangle$

Reduce

- Reduce replaces the topmost symbols on the stack by the lefthand side of a matching rule
- Configuration:
- $\left\langle\left[A_{1}, \ldots, A_{j-1}, A_{j}, \ldots, A_{k}\right],\left[w_{i}, \ldots, w_{n}\right]\right\rangle$
- Rule:
- $B \rightarrow A_{j}, \ldots, A_{k}$
- New Configuration:
- $\left\langle\left[A_{1}, \ldots, A_{j-1}, B\right],\left[w_{i}, \ldots, w_{n}\right]\right\rangle$

An Example

〈［］，［the student works］〉

$\Rightarrow_{\text {shift }}\langle[$ the］，［student works］〉
$\Rightarrow_{\text {red }}$ 〈［DET］，［student works］〉
$\Rightarrow_{\text {shift }}\langle[D E T$ student］，［works］〉
$\Rightarrow_{\text {red }}$ 〈［DET N］，［works］〉
$\Rightarrow_{\text {red }}$ 〈［NP］，［works］〉
$\Rightarrow_{\text {shift }}\langle[N P$ works］，［］〉
$\Rightarrow_{\text {red }}$ 〈［NP V］，［］〉
$\Rightarrow_{\text {red }}\langle[N P V P],[]\rangle$
$\Rightarrow_{\text {red }}$ 〈［S］，［］〉

$$
\begin{array}{rlrl}
\mathrm{S} & \rightarrow \mathrm{NP} \text { VP } & \text { DET } & \rightarrow \text { the } \\
\mathrm{NP} & \rightarrow \mathrm{DET} \mathrm{~N} & \mathrm{DET} & \rightarrow a \\
\mathrm{NP} & \rightarrow \mathrm{NP} \mathrm{PP} & \mathrm{~N} & \rightarrow \text { student } \\
\mathrm{PP} & \rightarrow \mathrm{P} \text { NP } & \mathrm{N} & \rightarrow \text { book } \\
\mathrm{VP} & \rightarrow \mathrm{~V} & \mathrm{~N} & \rightarrow \text { library } \\
\mathrm{VP} & \rightarrow \mathrm{~V} \text { NP } & \mathrm{V} & \rightarrow \text { works } \\
\mathrm{VP} & \rightarrow \mathrm{VP} \text { PP } & \mathrm{V} & \rightarrow \text { reads } \\
& \mathrm{P} & \rightarrow \text { in }
\end{array}
$$

Shift or Reduce?

- How can we decide whether we should perform a shift or a reduce operation?
- For certain (unamabiguous) grammars, it is possible to decide this automatically
- In general \Rightarrow Search

Python

```
def recognize(sent):
    agenda = [([], sent)]
    while agenda:
    (stack, sent) = agenda.pop()
    if sent == [] and stack == ['S']:
        return True
    if sntnc != []:
        agenda.append(shift(stack, sent))
    for (lhs, rhs) in rules:
        if len(stack) >= len(rhs):
            if matches(stack, rhs):
                        agenda.append(reduce(stack, sent, lhs, rhs))
    return False
```


Python

```
rules = [( 'S', ['NP', 'VP']), ('NP', ['DET', 'N']), ...]
def shift(stack, sent):
    return (stack + [sent[0]], sent[1:])
def reduce(stack, sent, lhs, rhs):
    return (stack[:-len(rhs)] + [lhs], sent)
def matches(stack, rhs):
    for (s, r) in zip(stack[-len(rhs):], rhs):
        if s != r:
                return False
    return True
```


Example－The student works

（stack，sent）agenda

2 〈［］［the student works］〉 〈［the］［student works］〉
3 〈［the］［student works］〉 〈［DET］［student works］〉＜［the student］［works］〉
4 〈［DET］［student works］〉 〈［DET student］［works］〉＜［the student］［works］〉
5 〈［DET student］［works］〉 〈［DET N］［works］〉＜［DET student works］［］〉＜［the student］［works］〉
6 〈［DET N］［works］〉
〈［NP］［works］〉
＜［NP works］［］
〈［NP V］［］〉
〈［NP VP］［］〉
〈［S］［］〉
$\langle[N P][$ works $]\rangle\langle[D E T$ N works］［］〉＜［DET student works］［］〉 ．．〈［NP works］［］〉〈［DET N works］［］〉＜［DET student works］［］〉 ．．．〈［NP V］［］〉＜［DET N works］［］〉＜［DET student works］［］〉 ．．． $\langle[N P$ VP］［］〉＜［DET N works］［］〉＜［DET student works］［］〉 ．．〈［S］［］〉＜［DET N works］［］〉＜［DET student works］［］〉 ．．．〈［DET N works］［］〉＜［DET student works］［］〉 ．．．

Example - The student reads ...

- [\Rightarrow Handout]

Problematic Rules

－Bottom－up parsers cannot deal with certain types of grammars（the parser may not terminate）
－Rules of the form $A \rightarrow \varepsilon$

- 〈［ $\left.\left.A_{1}, \ldots, A_{k}\right],\left[w_{i}, \ldots, w_{n}\right]\right\rangle$
- 〈［ $\left.\left.A_{1}, \ldots, A_{k}, A\right],\left[w_{i}, \ldots, w_{n}\right]\right\rangle$
（reduce）
－〈［ $\left.\left.A_{1}, \ldots, A_{k}, A, A\right],\left[w_{i}, \ldots, w_{n}\right]\right\rangle$
（reduce）
－$\left\langle\left[A_{1}, \ldots, A_{k}, A, A, A\right],\left[w_{i}, \ldots, w_{n}\right]\right\rangle$
（reduce）
－［．．．］

Problematic Rules

- Bottom-up parsers cannot deal with certain types of grammars (the parser may not terminate)
- Cyclic rules: $A \rightarrow B, B \rightarrow A$
- 〈[$\left.\left.A_{1}, \ldots, A_{k}, A\right],\left[w_{i}, \ldots, w_{n}\right]\right\rangle$
- $\left\langle\left[A_{1}, \ldots, A_{k}, B\right],\left[w_{i}, \ldots, w_{n}\right]\right\rangle$ (reduce)
- $\left\langle\left[A_{1}, \ldots, A_{k}, A\right],\left[w_{i}, \ldots, w_{n}\right]\right.$ (reduce)
- $\left\langle\left[A_{1}, \ldots, A_{k}, B\right],\left[w_{i}, \ldots, w_{n}\right]\right\rangle$ (reduce)
- [...]

Another Problem ...

The boy shot an elephant in ．．．

〈［］，［the boy shot an elephant in his pajamas］〉
＊＊ （［NP VP］，［in his pajamas］）
\Rightarrow 〈［S］，［in his pajamas］〉
\Rightarrow^{*}［［S PP］，［］〉 \Rightarrow Failure，Backtracking

The boy shot an elephant in ．．．

〈［］，［the boy shot an elephant in his pajamas］〉
＊＊〈［NP VP］，［in his pajamas］〉

The boy shot an elephant in ．．．

〈［］，［the boy shot an elephant in his pajamas］〉
\Rightarrow^{*} 〈［NP VP］，［in his pajamas］〉
\Rightarrow^{*} 〈［NP VP PP］，［］〉

The boy shot an elephant in ．．．

〈［］，［the boy shot an elephant in his pajamas］〉
\Rightarrow^{*} 〈［NP VP］，［in his pajamas］〉
\Rightarrow^{*} 〈［NP VP PP］，［］〉
$\Rightarrow{ }^{*}\langle[N P$ VP］，［］〉
$\Rightarrow{ }^{*}\langle[S],[]\rangle$

Dynamic Programming

- Context-free grammar: whether or not a rule can be applied does not depend on the context.

The boy shot an elephant in his pajamas

- Chart-Parsing: store intermediate results for already analysed constituents in a "chart"
- Charts are compact representations of all possible analyses ("parse forest")

Chart-Parsing

- Chart-Parsing: store intermediate results for already analysed constituents in a "chart"

■ Charts are compact representations of all possible analyses ("parse forest")

- Charts can contain
- complete constituents
- hypotheses for possible constituents
- Many different chart-parsers:
- Cocke-Younger-Kasami, Earley, ...

Charts as Matrices

- $A \in T[i, j]$ iff $A \Rightarrow * w_{i+1} \ldots w_{j}$

$$
\begin{array}{rlrl}
\mathrm{S} & \rightarrow \mathrm{NP} \text { VP } & \mathrm{DET} & \rightarrow \text { the } \\
\mathrm{NP} & \rightarrow \mathrm{DET} \mathrm{~N} & \mathrm{DET} & \rightarrow a n \\
\mathrm{NP} & \rightarrow \mathrm{POSS} \mathrm{~N} & \mathrm{~N} & \rightarrow \text { boy }
\end{array}
$$

$$
N P \rightarrow N P P P \quad N \rightarrow \text { elephant }
$$

$$
\mathrm{PP} \rightarrow \mathrm{P} N P \quad \mathrm{~N} \rightarrow \text { pajamas }
$$

$$
\mathrm{VP} \rightarrow \mathrm{~V} \text { NP } \quad \mathrm{V} \rightarrow \text { shot }
$$

$$
\mathrm{VP} \rightarrow \mathrm{VP} P \mathrm{PP}
$$

$$
P \rightarrow \text { in }
$$

$$
\text { POSS } \rightarrow \text { his }
$$

Cocke-Younger-Kasami

- The algorithm by Cocke, Younger, Kasami (CYK) is a simple chart-based bottom-up parser
- Restriction: the algorithm can be applied to grammars in Chomsky normal form only:
- A \rightarrow w
- $A \rightarrow B C$
- $S \rightarrow \varepsilon$
(w terminal symbol)
(B and C nonterminal symbols)
(S start symbol, only if $\varepsilon \in L$)
- Note: we will assume here that $\varepsilon \notin \mathrm{L}$, thus the grammar will not contain rules $S \rightarrow \varepsilon$

CYK (Recognizer, Pseudo-code)

function $\operatorname{CYK}\left(G, w_{1} \ldots W_{n}\right)$:
for i in $1 \ldots$ n do
$T[i-1, i]=\left\{A \mid A \rightarrow w_{i} \in R\right\}$
for j in i - $2 \ldots 0$ do
$T[j, i]=\varnothing$
for k in $\mathrm{j}+1$... i - 1 do
$T[j, i]=T[j, i] u$
$\{A \mid A \rightarrow B C, B \in T[j, k], C \in T[k, i]\}$
done
done
done
if $S \in T[0, n]$ then return True else return False

An Example

- [\Rightarrow blackboard]

Properties

- Correct: If $S \in T[0, n]$, then $S \Rightarrow^{*} w_{1} \ldots w_{n}$
- Complete: If $S \Rightarrow^{*} w_{1} \ldots w_{n}$, then $S \in T[0, n]$
- Runtime:

Polynomial in the input length: $\mathrm{O}\left(\mathrm{n}^{3}\right)$

Recognizer \rightarrow Parser

- The recognizer can be extended to a parser if we store, for each category A, a list of pointers to other entries in the chart that have been used to derive A

CYK (Parser)

Binarization

left binarization(G):

while G contains rules $A \rightarrow A_{1} A_{2} A_{3} \ldots A_{k}, k \geq 3$
delete the rule from G
add rule $\left\langle A_{1}, \ldots, A_{k-1}\right\rangle \rightarrow A_{1} \ldots A_{k-1}$
add rule $A \rightarrow\left\langle A_{1}, \ldots, A_{k-1}\right\rangle A_{k}$
right binarization(G):
while G contains rules $A \rightarrow A_{1} A_{2} A_{3} \ldots A_{k}, k \geq 3$
delete the rule from G
add rule $\left\langle A_{2}, \ldots, A_{k}\right\rangle \rightarrow A_{2} \ldots A_{k}$
add rule $A \rightarrow A_{1}\left\langle A_{2}, \ldots, A_{k}\right\rangle$

Implementation variants

■ $T[i, j]=T[i, j] \cup\{A \mid A \rightarrow B C, B \in T[i, k], C \in T[k, j]\}$

- \Rightarrow can be implemented in different ways
- Method 1
- Iterate over all rules $A \rightarrow B C$
- Check if $B \in T[i, k]$ and $C \in T[k, j]$
- Method 2
- Iterate over all $B \in T[i, k]$
- Iterate over all rules $A \rightarrow B C$
- Check if $C \in T[k, j]$

Implementierungsvarianten

■ $T[i, j]=T[i, j] \cup\{A \mid A \rightarrow B C, B \in T[i, k], C \in T[k, j]\}$

- \Rightarrow can be implemented in different ways
- Method 3
- Iterate over all $C \in T[k, j]$
- Iterate over all rules $A \rightarrow B C$
- Check if $A \in T[i, k]$
- Method 4
- Iterate over all $B \in T[i, k]$ and $C \in T[k, j]$
- Check if a rule $A \rightarrow B C$ exists

Song \&al. (EMNLP 2008)

- Experiments mit CYK \& Wall Street Journal
- Runtime depends on ...
- right binarization \Rightarrow method 3 is most efficient
- left binarization \Rightarrow method 2 is most efficient

