Exercise 9: Latent Semantic Analysis

You can earn up to 10 points on this exercise. 5 points is the lowest passing score. You may submit individually or as a group of up to 3 people. You may use any programming language you wish, but any submission that I cannot run on my computer without installing things must be presented to the class. (I like Python).

Please email your solution to claytong@coli.uni-saarland.de by 23:59 CEST on July 7, 2016. Your name(s) should be present when I print the files you send!

This exercise is adapted from data in: Landauer, T. K., Foltz, P. W., & Laham, D. (1998). An introduction to latent semantic analysis. Discourse processes, 25(2-3), 259-284.

Consider the following 5 documents on human-(c)omputer interaction and 4 documents on (m)athematical graph theory. We will focus on the *italicized* words.

Example of text data: Titles of Some Technical Memos

c1: Human machine interface for ABC computer applications

- c2: A survey of user opinion of computer system response time
- c3: The EPS user interface management system
- c4: System and human system engineering testing of EPS
- c5: Relation of *user* perceived *response time* to error measurement
- m1: The generation of random, binary, ordered trees
- m2: The intersection graph of paths in trees

m3: Graph minors IV: Widths of trees and well-quasi-ordering

m4: Graph minors: A survey

Ignoring case, this gives a term-document matrix of:

	$\mathbf{c1}$	$\mathbf{c2}$	$\mathbf{c3}$	$\mathbf{c4}$	$\mathbf{c5}$	m1	$\mathbf{m2}$	$\mathbf{m3}$	$\mathbf{m4}$
human	1	0	0	1	0	0	0	0	0
interface	1	0	1	0	0	0	0	0	0
computer	1	1	0	0	0	0	0	0	0
user	0	1	1	0	1	0	0	0	0
system	0	1	1	2	0	0	0	0	0
response	0	1	0	0	1	0	0	0	0
time	0	1	0	0	1	0	0	0	0
EPS	0	0	1	1	0	0	0	0	0
survey	0	1	0	0	0	0	0	0	1
trees	0	0	0	0	0	1	1	1	0
graph	0	0	0	0	0	0	1	1	1
minor	0	0	0	0	0	0	0	1	1

TASK 1

Compute the document-document similarity matrix, A^tA . (1 point) Compute the term-term similarity matrix, AA^t . (1 point) In words, what do these matrices mean? Qualitatively evaluate the numbers. (1 point)

TASK 2

Perform singular value decomposition (SVD) on the term-document matrix¹. (3 points) Using your decomposition, compute the document-document similarity matrix, $(SD^t)^t(SD^t)$, and the term-term similarity matrix, $(TS)(TS)^t$. (1 point) Compare the quality of these matrices to that of the matrices obtained in Task 1. (1 point)

Task 3

Remove all but the first two singular values from your decomposition. Hence, \hat{T} will be a 12×2 matrix, \hat{S} will be a 2×2 matrix, and \hat{D} will be a 9×2 matrix. Using these, compute the document-document similarity matrix, $(\hat{S}\hat{D}^t)^t(\hat{S}\hat{D}^t)$, and the term-term similarity matrix, $(\hat{T}\hat{S})(\hat{T}\hat{S})^t$. (1 point)

Compare the quality of these matrices to that of the matrices obtained in Task 1 and Task 2. (1 point)

¹For python, you may use the SVD package within NumPy described here:

http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.svd.html.