Exercise 9: Latent Semantic Analysis

You can earn up to 10 points on this exercise. 5 points is the lowest passing score.
You may submit individually or as a group of up to 3 people.
You may use any programming language you wish, but any submission that I cannot run on my computer without installing things must be presented to the class. (I like Python).

Please email your solution to claytong@coli.uni-saarland.de by
23:59 CEST on July 7, 2016. Your name(s) should be present when I print the files you send!

This exercise is adapted from data in:
Landauer, T. K., Foltz, P. W., \& Laham, D. (1998). An introduction to latent semantic analysis. Discourse processes, 25(2-3), 259-284.

Consider the following 5 documents on human-(c)omputer interaction and 4 documents on (m)athematical graph theory. We will focus on the italicized words.

```
Example of text data: Titles of Some Technical Memos
c1: Human machine interface for ABC computer applications
c2: A survey of user opinion of computer system response time
c3: The EPS user interface management system
c4: System and human system engineering testing of EPS
c5: Relation of user perceived response time to error measurement
m1: The generation of random, binary, ordered trees
m 2 : The intersection graph of paths in trees
m3: Graph minors IV: Widths of trees and well-quasi-ordering
m4: Graph minors: A survey
```

Ignoring case, this gives a term-document matrix of:

	$\mathbf{c 1}$	$\mathbf{c 2}$	$\mathbf{c 3}$	$\mathbf{c} 4$	$\mathbf{c 5}$	$\mathbf{m 1}$	$\mathbf{m 2}$	$\mathbf{m 3}$	$\mathbf{m 4}$
human	1	0	0	1	0	0	0	0	0
interface	1	0	1	0	0	0	0	0	0
computer	1	1	0	0	0	0	0	0	0
user	0	1	1	0	1	0	0	0	0
system	0	1	1	2	0	0	0	0	0
response	0	1	0	0	1	0	0	0	0
time	0	1	0	0	1	0	0	0	0
EPS	0	0	1	1	0	0	0	0	0
survey	0	1	0	0	0	0	0	0	1
trees	0	0	0	0	0	1	1	1	0
graph	0	0	0	0	0	0	1	1	1
minor	0	0	0	0	0	0	0	1	1

TASK 1

Compute the document-document similarity matrix, $A^{t} A$. (1 point)
Compute the term-term similarity matrix, $A A^{t}$. (1 point)
In words, what do these matrices mean? Qualitatively evaluate the numbers. (1 point)

TASK 2

Perform singular value decomposition (SVD) on the term-document matrix ${ }^{1}$. (3 points) Using your decomposition, compute the document-document similarity matrix, $\left(S D^{t}\right)^{t}\left(S D^{t}\right)$, and the term-term similarity matrix, $(T S)(T S)^{t}$. (1 point)
Compare the quality of these matrices to that of the matrices obtained in Task 1. (1 point)

TASK 3

Remove all but the first two singular values from your decomposition. Hence, \hat{T} will be a 12×2 matrix, \hat{S} will be a 2×2 matrix, and \hat{D} will be a 9×2 matrix. Using these, compute the document-document similarity matrix, $\left(\hat{S} \hat{D}^{t}\right)^{t}\left(\hat{S} \hat{D}^{t}\right)$, and the term-term similarity matrix, $(\hat{T} \hat{S})(\hat{T} \hat{S})^{t}$. (1 point)
Compare the quality of these matrices to that of the matrices obtained in Task 1 and Task 2. (1 point)

[^0]
[^0]: ${ }^{1}$ For python, you may use the SVD package within NumPy described here:
 http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.svd.html.

