Computational Linguistics, Exercise "POS-Tagging"

1. Run the viterbi algorithm (using pen and paper) for the input "man the boat" and the following (partically specified) HMM:

Emission probabilities:

	DT	NN	VB	•••
man	0.05	0.7	0.1	
the	0.4	0.05	0.05	
boat	0.05	0.8	0.05	

Transition probabilities:

	DT	NN	VB	End	•••
DT	0.05	0.7	0.1	0.1	
NN	0.2	0.15	0.3	0.2	
VB	0.3	0.2	0.1	0.2	
Start	0.4	0.1	0.2	0.0	
•••					

2. Complete the implementation of the HMM-tagger which you can download from the course website. You have to implement the two following two methods

 $P_emit(self,\,y,\,o)$ - the emission probability of the word o given the tag y

 $P_{trans}(self, x, y)$ - the transition probability of the tag y given tag x

In a first step, implement a "strict" version of the probabilities, i.e., the two methods should return 0 in case a word or bigram has not been seen in the training data.

- 3. Evaluate your tagger implementation.
- a. How many words receive their correct tags?
- b. How many sentences receive a non-zero probability?
- c. How many words receive their correct tags if you take only known words into account, i.e., if you evaluate only on sentences with a non-zero probability?

4. Optional: Implement One-Count smoothing to estimate probabilities of unknown words and redo the evaluation. The method is described in the Appendix of Jason Eisners tagging tutorial (see course website).