
(1) Implement a probabilistic parser using the CYK algorithm. Use the following grammar and 
input sentences to test your parser:

! S!→ NP VP! [1.0]! DET !→ the! [0.8]

! NP!→ DET N! [0.8]! DET !→ a! [0.2]

! NP!→ NP PP! [0.2]! N!→ student![0.55]

! VP!→ V NP! [0.4]! N!→ book! [0.25]

! VP!→ VP PP! [0.6]! N!→ library! [0.2]

! PP!→ P NP! [1.0]! V!→ reads! [1.0]

On the course homepage, you can find a partial implementation (in Python) which you 
might find useful.

(2) On the course web-page you can download a relative large grammar where rules are 
annotated with frequency counts. Convert this grammar into a PCFG in Chomsky normal 
form and apply your parser implementation from (1) to the resulting grammar. Use the 
following sentences as test inputs, and compute labelled precision and labelled recall for 
the parser output. 

a. The reason was not high interest rates or labor costs

b. Many other factors played a part in yesterday 's comeback

The corresponding gold-standard trees are as follows:

c. [S![NP! [DT The] [NN reason]]
! [VP! [VBD was]
! ! [RB not]
! ! [NP [JJ high] [NN interest] [NNS rates] [CC or] [NN labor] [NNS costs]]]]

d. [S![NP! [JJ Many] [JJ other] [NNS factors]]
! [VP! [VBD played]
! ! [NP [DT a] [NN part]]
! ! [PP [IN in] [NP [NP [NN yesterday] [POS 's]] [NN comeback]]]]]

Note 1: you don’t have to implement anything to compute labelled precision and labelled 
recall – you can do the computation manually using pen & paper. 

Note 2: the gold standard trees are not binary, so you have to “undo“ the binarisation of 
the parser output in a first step.

Computational Linguistics, Exercise sheet 3


