Exercise 10: Non-negative Matrix Factorization

You can earn up to 10 points on this exercise. 5 points is the lowest passing score. You may submit individually or as a group of up to 3 people. You may use any programming language you wish, but any submission that I cannot run on my computer without installing things must be presented to the class. (I like Python).

Please email your solution to claytong@coli.uni-saarland.de by 23:59 CEST on July 14, 2016. Your name(s) should be present when I print the files you send!

This exercise is adapted from data in: Lenderer T. K. Feltz, P. W. & Lehers, D. (1008). An intro-

Landauer, T. K., Foltz, P. W., & Laham, D. (1998). An introduction to latent semantic analysis. *Discourse processes*, 25(2-3), 259–284.

Consider the following 5 documents on human-(c)omputer interaction and 4 documents on (m)athematical graph theory. We will focus on the *italicized* words.

Example of text data: Titles of Some Technical Memos

c1: Human machine interface for ABC computer applications

- c2: A survey of user opinion of computer system response time
- c3: The EPS user interface management system
- c4: System and human system engineering testing of EPS
- c5: Relation of *user* perceived *response time* to error measurement

m1: The generation of random, binary, ordered trees

m2: The intersection graph of paths in trees

m3: Graph minors IV: Widths of trees and well-quasi-ordering

m4: Graph minors: A survey

Ignoring case, this gives a term-document matrix of:

	$\mathbf{c1}$	$\mathbf{c2}$	c3	c4	$\mathbf{c5}$	m1	$\mathbf{m2}$	m3	m4
human	1	0	0	1	0	0	0	0	0
interface	1	0	1	0	0	0	0	0	0
computer	1	1	0	0	0	0	0	0	0
user	0	1	1	0	1	0	0	0	0
system	0	1	1	2	0	0	0	0	0
response	0	1	0	0	1	0	0	0	0
time	0	1	0	0	1	0	0	0	0
EPS	0	0	1	1	0	0	0	0	0
survey	0	1	0	0	0	0	0	0	1
trees	0	0	0	0	0	1	1	1	0
graph	0	0	0	0	0	0	1	1	1
minor	0	0	0	0	0	0	0	1	1

TASK 1

What does the W matrix represent in a non-negative matrix factorization? (1 point) What does the H matrix represent in a non-negative matrix factorization? (1 point)

Task 2

Implement non-negative matrix factorization without using ready-made packages. (3 points) Using your implementation, factorize

$$\left[\begin{array}{rrrr} 1 & 2 & 0 \\ 0 & 3 & 0 \\ 2 & -4 & 2 \end{array}\right]$$

into two three-dimensional subspaces. Report a $W \cdot H$ for a good random initialization. (1 point)

TASK 3

Using your implementation, factorize the term-document matrix into two two-dimensional subspaces. (1 point)

Using the decomposition, calculate the term-term similarity matrix. (1 point)

Using the decomposition, calculate the document-document similarity matrix. (1 point)

How do these matrices compare with those produced by SVD with two singular values? (1 point)