
(1) a) Apply (using pen and paper) the recognition algorithm on slide 17 to the 
nondeterministic automaton shown below and the input string “ababa”. Assume that the 
transition (q1, b, q2) is processed before (q1, b, q3).
b) Bonus: There is a problem with this algorithm. Which one? How can the algorithm be 
improved?

74 

(iii) aab 
(iv) e 

a 

Chapter 2: FINITE AUTOMATA 

(b) Repeat for the following strings and the nondeterministic finite automa-
ton on the right above: 

(i) e 
(ii) ab 

(iii) abab 
(iv) aba 
(v) abaa 

2.2.2. Write regular expressions for the languages accepted by the nondeterminis-
tic finite automata of Problem 2.2.1. 

2.2.3. Draw state diagrams for nondeterministic finite automata that accepts these 
languages. 
(a) (ab)*(ba)* U aa* 
(b) ((ab U aab)*a*)* 
(c) ((a*b*a*)*b)* 
(d) (ba U b)* U (bb U a)* 

2.2.4. Some authors define a nondeterministic finite automaton to be a quintuple 
S, F), where and F are as defined and S is a finite set 

of initial states, in the same way that F is a finite set of final states. The 
automaton may nondeterministically begin operating in any of these initial 
states. 
(a) Show that the language L C {al, ... , an} * consisting of all strings 

that are missing at least one symbol (recall Example 2.2.2) would be 
accepted by such an automaton with n states ql, ... , qn, all of which 
are both final and initial, and the transition relation = {(qi,aj,qi) : 
i -I- n· 

(b) Explain why this definition is not more general than ours in any signif-
icant way. 

2.2.5. By what sequences of steps, other than the one presented in Example 2.2.1, 
can the nondeterministic finite automaton of Figure 2-7 accept the input 
bababab? 

2.2.6. (a) Find a simple nondeterministic finite automaton accepting (ab U aab U 
aba)* . 

70 Chapter 2: FINITE AUTOMATA 

This algorithm is a specialization of our general algorithm for closure com-
putations (recall the last algorithm in Section 1.6) to the situation in hand. It 
is guaranteed to terminate after at most IKI iterations, because each execution 
of the while loop adds another state to E(q), and there are at most IKI states 
to be added. We shall see many instances of such closure algorithms later. 

e 

Figure 2-9 

Example 2.2.3: In the automaton of Figure 2-9, we have E(qo) = {qO, q1, q2, q3}, 
E(qt) = {q1,q2,q3}, and E(q2) = {q2}.O 

We are now ready to define formally the deterministic automaton M' 
(K',L.,8',s',F') that is equivalent to M. In particular, 

K' = 2K , 
s' = E(s), 

F' = {Q C K: Q n F f 0}, 

and for each Q C K and each symbol a E L., define 

8'(Q, a) = U{E(p) : p E K and (q, a,p) E for some q E Q}. 

That is, 8' (Q, a) is taken to be the set of all states of M to which M can go by 
reading input a (and possibly following several e transitions). For example, if 
Mis the automaton of Figure 2-9. then S' = {qo. qt. q2. q3}· Since the only transitions 
from q1 on input a are (q1,a,qo) and (q1,a,q4), it follows that 8'({qt},a) = 
E(qo) U E(q4) = {qO,q1,q2,q3,q4}. 

It remains to show that M' is deterministic and equivalent to M. The 
demonstration that M' is deterministic is straightforward: we just notice that 
8' is single-valued and well defined on all Q E K' and a E L., by the way it was 
constructed. (That 8' (Q, a) = 0 for some Q E K' and a E L. does not mean 8' is 
not well defined; 0 is a member of K'.) 

70 Chapter 2: FINITE AUTOMATA 

This algorithm is a specialization of our general algorithm for closure com-
putations (recall the last algorithm in Section 1.6) to the situation in hand. It 
is guaranteed to terminate after at most IKI iterations, because each execution 
of the while loop adds another state to E(q), and there are at most IKI states 
to be added. We shall see many instances of such closure algorithms later. 

e 

Figure 2-9 

Example 2.2.3: In the automaton of Figure 2-9, we have E(qo) = {qO, q1, q2, q3}, 
E(qt) = {q1,q2,q3}, and E(q2) = {q2}.O 

We are now ready to define formally the deterministic automaton M' 
(K',L.,8',s',F') that is equivalent to M. In particular, 

K' = 2K , 
s' = E(s), 

F' = {Q C K: Q n F f 0}, 

and for each Q C K and each symbol a E L., define 

8'(Q, a) = U{E(p) : p E K and (q, a,p) E for some q E Q}. 

That is, 8' (Q, a) is taken to be the set of all states of M to which M can go by 
reading input a (and possibly following several e transitions). For example, if 
Mis the automaton of Figure 2-9. then S' = {qo. qt. q2. q3}· Since the only transitions 
from q1 on input a are (q1,a,qo) and (q1,a,q4), it follows that 8'({qt},a) = 
E(qo) U E(q4) = {qO,q1,q2,q3,q4}. 

It remains to show that M' is deterministic and equivalent to M. The 
demonstration that M' is deterministic is straightforward: we just notice that 
8' is single-valued and well defined on all Q E K' and a E L., by the way it was 
constructed. (That 8' (Q, a) = 0 for some Q E K' and a E L. does not mean 8' is 
not well defined; 0 is a member of K'.) 

70 Chapter 2: FINITE AUTOMATA 

This algorithm is a specialization of our general algorithm for closure com-
putations (recall the last algorithm in Section 1.6) to the situation in hand. It 
is guaranteed to terminate after at most IKI iterations, because each execution 
of the while loop adds another state to E(q), and there are at most IKI states 
to be added. We shall see many instances of such closure algorithms later. 

e 

Figure 2-9 

Example 2.2.3: In the automaton of Figure 2-9, we have E(qo) = {qO, q1, q2, q3}, 
E(qt) = {q1,q2,q3}, and E(q2) = {q2}.O 

We are now ready to define formally the deterministic automaton M' 
(K',L.,8',s',F') that is equivalent to M. In particular, 

K' = 2K , 
s' = E(s), 

F' = {Q C K: Q n F f 0}, 

and for each Q C K and each symbol a E L., define 

8'(Q, a) = U{E(p) : p E K and (q, a,p) E for some q E Q}. 

That is, 8' (Q, a) is taken to be the set of all states of M to which M can go by 
reading input a (and possibly following several e transitions). For example, if 
Mis the automaton of Figure 2-9. then S' = {qo. qt. q2. q3}· Since the only transitions 
from q1 on input a are (q1,a,qo) and (q1,a,q4), it follows that 8'({qt},a) = 
E(qo) U E(q4) = {qO,q1,q2,q3,q4}. 

It remains to show that M' is deterministic and equivalent to M. The 
demonstration that M' is deterministic is straightforward: we just notice that 
8' is single-valued and well defined on all Q E K' and a E L., by the way it was 
constructed. (That 8' (Q, a) = 0 for some Q E K' and a E L. does not mean 8' is 
not well defined; 0 is a member of K'.) 

70 Chapter 2: FINITE AUTOMATA 

This algorithm is a specialization of our general algorithm for closure com-
putations (recall the last algorithm in Section 1.6) to the situation in hand. It 
is guaranteed to terminate after at most IKI iterations, because each execution 
of the while loop adds another state to E(q), and there are at most IKI states 
to be added. We shall see many instances of such closure algorithms later. 

e 

Figure 2-9 

Example 2.2.3: In the automaton of Figure 2-9, we have E(qo) = {qO, q1, q2, q3}, 
E(qt) = {q1,q2,q3}, and E(q2) = {q2}.O 

We are now ready to define formally the deterministic automaton M' 
(K',L.,8',s',F') that is equivalent to M. In particular, 

K' = 2K , 
s' = E(s), 

F' = {Q C K: Q n F f 0}, 

and for each Q C K and each symbol a E L., define 

8'(Q, a) = U{E(p) : p E K and (q, a,p) E for some q E Q}. 

That is, 8' (Q, a) is taken to be the set of all states of M to which M can go by 
reading input a (and possibly following several e transitions). For example, if 
Mis the automaton of Figure 2-9. then S' = {qo. qt. q2. q3}· Since the only transitions 
from q1 on input a are (q1,a,qo) and (q1,a,q4), it follows that 8'({qt},a) = 
E(qo) U E(q4) = {qO,q1,q2,q3,q4}. 

It remains to show that M' is deterministic and equivalent to M. The 
demonstration that M' is deterministic is straightforward: we just notice that 
8' is single-valued and well defined on all Q E K' and a E L., by the way it was 
constructed. (That 8' (Q, a) = 0 for some Q E K' and a E L. does not mean 8' is 
not well defined; 0 is a member of K'.) 

(2) Construct a deterministic automaton for the nondeterministic automaton from (1), using 
the subset construction algorithm on slide 25.

(3) Implement the recognition algorithm for NFA on slide 17. Your submission should use the 
automaton from (1) and the following inputs as test case:
• ab ∈ L(M)

• aba ∈ L(M)
• abaab ∈ L(M)
• abba ∉ L(M)
• aabab ∉ L(M)
• More test cases are welcome!

(4) Implement the subset construction algorithm on slide 25. Your submission should use the 
automaton from (1) as a test case.

Computational Linguistics, Exercise sheet 1


