Computational Linguistics Distributional Semantics

Dietrich Klakow

FR 4.7 Allgemeine Linguistik (Computerlinguistik) Universität des Saarlandes Summer 2012

Goal

Goal:

treat document clustering and word clustering on the same footing (same semantic space)

find low dimensional representations

From Frequency to Meaning: Vector Space Models of semantics

d on paper by Turney and Pantel; Journal of Artificial Intelligence Research, 2010, page

Derive semantics from corpus Performs well on tasks that need to measure semantic similarity for words, phrases, documents,

Similarities

- Document-Document
 - -> build a term document matrix
 - -> Calculate distance between vectors representing documents directly
 - -> Use LSA, ...

Similarities

- Document-Document
 - -> build a term document matrix
 - -> Calculate distance between vectors representing documents directly
 - -> Use LSA, ...

Alternative: word-context matrix (context being phrase, sentence, paragraph, ...)

Assumption: words that occur in similar contexts have similar meaning

Similarity of Relations

Row:

pairs of words (e.g. mason:stone)

Column:

patterns:

X cuts Y

X works with Y

• • •

Patterns establish relations between words

Measure similarity between patterns

Y is solved by X	<i>Y</i> is resolved in <i>X</i>
X resolves Y	<i>Y</i> is solved through <i>X</i>
X finds a solution to Y	X rectifies Y
X tries to solve Y	X copes with Y
X deals with Y	X overcomes Y
Y is resolved by X	X eases Y
X addresses Y	X tackles Y
X seeks a solution to Y	X alleviates Y
X do something about Y	X corrects Y
X solution to Y	X is a solution to Y

Similarity of Pairs of Words

Table 10

The sixteen combinations and their cosines. *A*:*B*::*C*:*D* expresses the analogy "*A* is to *B* as *C* is to D". The third column indicates those combinations for which the cosine is greater than or equal to the cosine of the original analogy, quartvolume::mile:distance.

Word pairs	Cosine	Cosine \geq original pairs
quart:volume::mile:distance	0.525	yes (original pairs)
quart:volume::feet:distance	0.464	
quart:volume::mile:length	0.634	yes
quart:volume::length:distance	0.499	
liter:volume::mile:distance	0.736	yes
liter:volume::feet:distance	0.687	yes
liter:volume::mile:length	0.745	yes
liter:volume::length:distance	0.576	yes
gallon:volume::mile:distance	0.763	yes
gallon:volume::feet:distance	0.710	yes
gallon:volume::mile:length	0.781	yes (highest cosine)
gallon:volume::length:distance	0.615	yes
pumping:volume::mile:distance	0.412	-
pumping:volume::feet:distance	0.439	
pumping:volume::mile:length	0.446	
pumping:volume::length:distance	0.491	

Similarity of Semantic Relations

Peter D. Turney * National Research Council Canada

The big playground

- Pick:
 - Type of context (e.g. document, sentence, pattern, ...)
 - Representation (e.g. frequency, tf-idf, ...)
 - Way to process the matrix (e.g. original, LSA, NMF, ...)
 - Distance metric (Euclidian, cosine, ...)

Homework	
At <u>http://alfonseca.org/e</u> wordsim_similarity_e two words:	eng/research/wordsim353.html in file goldstandard.txt you find human annotations for the similarity of
	iger cat 7.35 iger jaguar 8.00 iger camivore 7.08 iger animal 7.00 iger organism 4.77 iger fauna 5.62
Use Penn-Treebank containing the freque	to build a vector with context words (e.g. one left, one right) ency (or tf-idf value) for each context word
Calculate the similar word (Euclidian or calculate the similar word)	rity between the two vectors representing the first and second osine distance)
How good are you able	to reproduce the human annotation?

This is a very experimental task!

Vector-based Models of Semantic Composition

Based on paper by Jeff Mitchell and Mirella Lapata

Composition

- Meaning of larger units determined from meaning of smaller units
 - Morphemes
 - Words
 - Phrases
 - Sentences

Approaches

- Logic-based View
 - Write down logical expressions for parts
 - Logical expressions for larger units derived from parts

Linear functio	ns	
Most general	$A^{\mathbf{I}} = D^{\mathbf{I}} = \mathbf{I}$	
ļ l	D = AU + BV + N	
with matrices A	and B	
Specific versi	ons	
	p = u + v	additive
	p = u + v + n	"Kintsch"
	$p = \alpha u + \beta v$	weighted additive

xample					
	Нуро	thetical s	emantic	space	
	Music	Solution	Economy	Craft	Reasonable
practical	0	6	2	10	4
difficulty	1	8	4	4	0
What wo	ould be the ditive mode	"combined	semantics	" using	
• the we	eighted add	itive model	I (using $\alpha = 0$	0.4 and $\beta = 0$	0.6)

Multiplicative combination (bilinear)• Most general
$$\stackrel{1}{p} = C_{uv}^{11}$$

 $C : a rank 3 Tensorthat is $p_k = \sum_{i,j} C_{k,i,j} u_i v_j$ • Specific versions $p_i = u_i v_i$ multiplication
 $p_i = \sum_{j=1}^n u_j v_{(i-j) \mod n}$ circular convolution$

Model	Adjective-Noun	Noun-Noun	Verb-Object
Additive	0.36	0.39	0.30
Kintsch	0.32	0.22	0.29
Mutliplicative	0.46	0.49	0.37
Tensor Product	0.41	0.36	0.33
Convolution	0.09	0.05	0.10
Weighted Additive	0.44	0.41	0.34
Dilation	0.44	0.41	0.38
Target Unit	0.43	0.34	0.29
Head Only	0.43	0.17	0.24
Humans	0.52	0.49	0.55

Summary

The playground of distributional semantics

Compositionality