
Computational Linguistics
Algorithms for Scope Underspecification

Dietrich Klakow & Stefan Thater
FR 4.7 Allgemeine Linguistik (Computerlinguistik)
Universität des Saarlandes

Summer 2012

Today

■ Refining the solver from the last lecture

■ Hypernormally connected dominance graphs

■ Tree Automata (in a nutshell)

■ Redundancy elimination (very short)

2

Solving dominance graphs

solve(G = ⟨V, E ⊎ D⟩) = (*)

choose a free fragment F of G else fail
let G1, …, Gk be the WCC’s of G\F
let ⟨Vi, Ei ⊎ Di⟩ = solve(Gi)
return ⟨V, E ⊎ D1 ⊎ ⋯ ⊎ Dk ⊎ D’⟩

where D’ are dominance edges that connect the holes of F
with the solved form of one of the corresponding Gi

(*) slightly simplified version, works only for connected normal dominance graphs

3

(Bodirsky &al., 2004)

An Example

■ Every researcher of a company saw a sample.

4

seex,y

companyz researcher-ofx,z

!z

sampley

"x !y

An Example: Run #1

5

subgraph free wccs

{1,…,7} 1 {4}, {2,3,5,6,7}

{2,3,5,6,7} 3 {7}, {2,5,6}

{2,5,6} 2 {5}, {6}

1 2 3

4 5 6 7

1 2 3

4 5 6 7

1 2 3

4 5 6 7

1 2 3

4 5 6 7

An Example: Run #2

6

subgraph free wccs

{1,…,7} 3 {7}, {1,2,4,5,6}

{1,2,4,5,6} 1 {4}, {2,5,6}

{2,5,6} 2 {5}, {6}

1 2 3

4 5 6 7

1 2 3

4 5 6 7

1 2 3

4 5 6 7

1 2 3

4 5 6 7

An Example

7

subgraph free wccs

{1,…,7} 3 {7}, {1,2,4,5,6}

{1,2,4,5,6} 1 {4}, {2,5,6}

{2,5,6} 2 {5}, {6}

subgraph free wccs

{1,…,7} 1 {4}, {2,3,5,6,7}

{2,3,5,6,7} 3 {7}, {2,5,6}

{2,5,6} 2 {5}, {6}

1 2 3

4 5 6 7

1 2 3

4 5 6 7

Problem: The algorithm
is applied twice to the
subgraph {2,5,6}

Chart-based solver

■ Basic idea: use dynamic programmic techniques and
store intermediate results in a chart-like datastructure

■ The chart records how graphs are decomposed into
smaller subgraphs if free fragments are removed
■ The chart assigns each subgraph a “split.”
■ Splits consist of (references to) a free fragment F and the

weakly connected components of G\F.
■ Notation: F(G1, …, Gn)

8

The algorithm

9

(′)
′

← (′)
=

′

∈
← (′,)

∈ (′ −)
() =

(′,)

(Koller & Thater, 2005)

An Example

10

subgraph splits

{1,…,7} 1({4}, {2,3,5,6,7})

2({1,4,5}, {3,6,7})

3({1,2,4,5,6}, {7}⟩

{2,3,5,6,7} 2({5}, {3,6,7})

3({2,5,6}, {7})

{1,2,4,5,6} 1({4}, {2,5,6})

2({1,4,5}, {6})

{2,5,6} 2({5}, {6})

{3,6,7} 3({7}, {6})

{1,4,5} 1({4}, {5})

(′)
′

← (′)
=

′

∈
← (′,)

∈ (′ −)
() =

(′,)

1 2 3

4 5 6 7
2({1,4,5}, {3,6,7})

2({5}, {3,6,7})

3({2,5,6}, {7})

1({4}, {2,5,6})

2({1,4,5}, {6})

Complexity

11

■ Let G be a dominance graph with n nodes and m edges

■ The computation of free fragments takes time O(n + m)

■ The time to compute the chart is O(n(n + m) wcsg(G))
■ wcsg(G) = the number of weakly connected subgraphs of G

■ Worst case complexity in the number of nodes is O(n22n)
■ ⇒ big improvement compared to O(n2n!) of the basic solver
■ (n! = upper bound for the number of solved forms)

Hypernormally Connected
Dominance Graphs

The big picture

■ Every student reads a book
(1) ∀x(student(x), ∃y(book(y), read(x, y))

(2) ∃y(book(y), ∀x(student(x), read(x, y))

13

studentx booky

!x

readx,y

"y studentx

booky

!x

readx,y

"y

studentx

booky
!x

readx,y

"y

studentx
booky

!x

readx,y

"y
(1)

studentx

booky

!x

readx,y

"y(2)

Simple solved forms

■ We are usually interested only in solved forms in which
every hole is related to exactly one root
■ let’s call such solved forms “simple”

■ Simple solved forms can be mapped to “proper” trees
simply by “plugging” the hole with the root connected to
it by a dominance edge.

14

studentx

booky

!x

readx,y

"y
studentx

booky

!x

readx,y

"y

■ Problem:
Not all solved forms are simple

■ Solution:
Identify a class of dominance graphs
that only have simple solved forms

■ ⇒ Hypernormally connected dominance graphs

Not all solved forms are simple

15

a b

g

Hypernormally connected
dominance graphs

■ A hypernormal path in a (normal) dominance graph G
is a path in the undirected version of G that does not
use two dominance edges incident to the same hole.

■ A (normal) dominance graph G is hypernormally
connected if each pair of nodes is connected by some
hypernormal path.

16

Hypernormally connected
dominance graphs

■ Hypernormally connected:

17

¬

seex,y

companyz researcher-ofx,z

!z

sampley

"x !y

Hypernormally connected
dominance graphs

■ Not hypernormally connected:

18

f

c

a b

g

d

f
g

Hypernormally connected
dominance graphs

■ Lemma: if G is a hypenormally connected normal
dominance graph with free fragment F, then all WCCs of
G\F are hypernormally connected.

■ Proposition: if a normal dominance graph is
hypernormally connected, then all its (minimal) solved
forms are simple.

19

Tree Automata

Bottom-up Tree Automaton

■ A tree automaton is a tuple A = ⟨Q, Σ, Qf, Δ⟩
■ Σ a finite ranked signature
■ Q a finite set of states
■ Qf ⊆ Q a finite set of final (accepting) states
■ Δ a finite set of transition rules

■ Transition rules:
■ f(q1(x1), …, qn(xn)) → q(f(x1, …, xn))

■ f ∈ Σ
■ q, q1, …, qn ∈ Q
■ x1, …, xn different variables

21

(see Comon &al., 2007)

An Example Computation

■ Q = {q3, q4, …}, Σ = {∃x|2, booky|0, …}, Qf = {q12345}

22

studentx

booky

!x

readx,y

!y studentx

q4

!x

readx,y

!y

booky

studentx

q4

!x

q5

!y

booky readx,y

studentx

!x

q245

booky readx,y

!y studentx

booky

!x

readx,y

!y

q12345

*

/∃x(q3(x1), q245(x2))/→ q12345(∃x(x1, x2))
/ ∃y(q4(x1), q5(x2))/→ q245(∃y(x1, x2))
/ studentx/→ q3(studentx)
/ booky/→ q4(booky)
/ readx,y/→ q5(readx,y)

Bottom-up Tree Automaton

■ A tree t is accepted by an atomaton A = ⟨Q, Σ, Qf, Δ⟩ if
■ t →* q(t)
■ q ∈ Qf

■ The language L(A) of trees recognized by A is the set
of trees accpeted by A.

23

Another Example

■ Automaton (rules)

■ Accepted Trees:

24

/ ∃x(q3(x1), q245(x2))/→ q12345(∃x(x1, x2))
/ ∃y(q4(x1), q135(x2))/→ q12345(∃y(x1, x2))
/ ∃y(q4(x1), q5(x2))/→ q245(∃y(x1, x2))
/ ∃x(q3(x1), q5(x2))/→ q135(∃x(x1, x2))

studentx
booky

!x

readx,y

!y

studentx

booky

!x

readx,y

!y

/studentx/ → q3(studentx)
/ booky/ → q4(booky)
/ readx,y/ → q5(readx,y)

Back to dominance charts

25

studentx

!x

readx,y

!y

booky

! "

$

%

dominance chartdominance chart

{1,2,3,4,5} 1({3}, {2,4,5})

2({4}, {1,3,5})

{2,4,5} 2({4}, {5})

{1,3,5} 1({3}, {5})

Compare

26

dominance chartdominance chart

{1,2,3,4,5} 1({3}, {2,4,5})

2({4}, {1,3,5})

{2,4,5} 2({4}, {5})

{1,3,5} 1({3}, {5})

tree automaton

/ ∃x(q3(x1), q245(x2))/ → q12345(∃x(x1, x2))

/ ∃y(q4(x1), q135(x2))/ → q12345(∃y(x1, x2))

/ ∃y(q4(x1), q5(x2))/ → q245(∃y(x1, x2))

/ ∃x(q3(x1), q5(x2))/ → q135(∃x(x1, x2))

/ studentx/ → q3(studentx)

/ booky/ → q4(booky)

/ readx,y/ → q5(readx,y)

Charts = Tree automata

27

■ Dominance charts can be seen as (or translated into)
tree automata
■ … provided that the original dominance graph is

hypernormally connected (why?)

Charts = Tree automata

■ The class of recognizable languages is closed under
■ Union
■ Complement
■ Intersection

■ ⇒ We can model certain inferences on the level of
dominance charts by intersecting regular tree languages
■ Redundancy elimination
■ Weakest readings

28

Redundancy Elimination
(very short)

Ambiguity, revisited

■ A student reads a book
(1) ∃x(student(x), ∃y(book(y), read(x, y))

(2) ∃y(book(y), ∃x(student(x), read(x, y))

30

studentx booky

!x

readx,y

!y

studentx
booky

!x

readx,y

!y

studentx

booky

!x

readx,y

!y

Redundancy Elimination

■ A student reads a book
(1) ∃x(student(x), ∃y(book(y), read(x, y))

(2) ∃y(book(y), ∃x(student(x), read(x, y))

■ Readings (1) and (2) are logically equivalent!

■ Basic idea:
■ Model the relation between (1) and (2) by rewrite rules
■ Translate the rewrite rules into a tree automaton
■ Redundancy elimination = Intersection of regular tree

languages

31

Redundancy Elimination

32

Sentence

Tree Automaton

Rewrite Rules

Tree Transducer M

τM-1(L(A))

Tree Automaton
L(Aʼ) = L(A) ∩ τM-1(L(A))

Complement of the pre-
image of L(A) under M:
trees that cannot be rewritten
into a reading

Redundancy elimination:
readings that cannot be
rewritten into an equivalent
reading

(Koller & Thater, 2010)

References

■ Alexander Koller and Stefan Thater (2005). The
evolution of dominance constraint solvers [PDF]. In
Proceedings of the ACL Workshop on Software.

■ Alexander Koller and Stefan Thater (2010). Computing
Weakest Readings [PDF]. In Proceedings of the 48th
Annual Meeting of the Association for Computational
Linguistics.

■ Hubert Comon, Max Dauchet, Remi Gilleron, Florent
Jacquemard, Denis Lugiez, Christof Löding, Sophie Tison,
Marc Tommasi. Tree Automata, Techniques and
Applications. [PDF]

33

