Computational Linguistics
Algorithms for Scope Underspecification

Dietrich Klakow & Stefan Thater
FR 4.7 Allgemeine Linguistik (Computerlinguistik)
Universitat des Saarlandes

Summer 2012

Today

m Refining the solver from the last lecture
m Hypernormally connected dominance graphs
® Tree Automata (in a nutshell)

m Redundancy elimination (very short)

(Bodirsky &al., 2004)

Solving dominance graphs

solve(G =(V, Eu D)) =™
choose a free fragment F of G else fall
let Gy, ..., Gk be the WCC’s of G\F
let (Vi, Ei ¥ Di) = solve(Gj)
return {(V, Ew D1 ¥ -+ W Dx ¥ D’)

where D’ are dominance edges that connect the holes of F
with the solved form of one of the corresponding Gi

(*) slightly simplified version, works only for connected normal dominance graphs

An Example

m Every researcher of a company saw a sample.

dz Vx Jy
. A.\ , A' . ‘/\:’
' . ' . ' .
LY L} 4
: N S A
company, researcher-ofy, + sampley
' o
l‘ "l
\ry

An Example: Run #1

@ A A subgraph free WCCSs
A X KA {1,..7} 1 {4}, {2.35.6,7}
AA {2,3,5,6,7} 3 {7}, {2,5,6}
A R {256} 2 {5}, {6}
'
&2
\

An Example: Run #2

?A_ subgraph free WCCS
5

2
b4 ’ - °
NN {1,....7} 3 {7} 1{1,2,45,6}

{1,2,4,5,6} 1 {4}, {2,5,6}

{
VO
PN {2,5,6} 2 {5}, {6}
{
ON

An Example

Problem: The algorithm
is applied twice to the
subgraph {2,5,6}

T —

subgraph free wccs
{1,....7} 1 {4}, {2,3,5,6,7}
{2,3,5,6,7} 3 {7}, {2,5,6}
{2,5,6} 2 {5}, {6}
subgraph free WCCS
{1,....7} 3 {7}, {1,2,4,5,6}
{1,2,45,6} 1 {4}, {2,5,6}
{2,5,6} 2 {5}, {6}

Chart-based solver

m Basic idea: use dynamic programmic techniques and
store intermediate results in a chart-like datastructure

m The chart records how graphs are decomposed into
smaller subgraphs if free fragments are removed

® The chart assigns each subgraph a “split.”

® Splits consist of (references to) a free fragment F and the
weakly connected components of G\F.

® Notation: F(Ga, ..., Gn)

(Koller & Thater, 2005)

The algorithm

GRAPH-SOLVER-CHART(G")
1 if there is an entry for G’ in the chart
then return true

free — FREE-FRAGMENTS(G')

if free =0
then return false

if G’ contains only one fragment
then return true

0NNk W

9 for each F € free
10 do split — SpPLIT(G',F)
11 for each S € Wces(G' —F)
12 do if GRAPH-SOLVER-CHART(S) = false
13 then return false
14 add (G, split) to the chart
15 return true

An Example

A A A subgraph splits

i {1,..,7} 1({4}, {2,3,5,6,7})

2\)& /K /\

2({1,4,5}, {3.6,7})

GRAPH-SOLVER-CHART(G')

1 if there is an entry for G’ in the chart 3({1,2,4,5,6}, {7})
2 then return true

3 free — FREE-FRAGMENTS(G') {2,3,5,6,7} 2({5}, {3,6,7})

4 iffree=10

5 then return false 3({2,5,6}, {7})

6 if G’ contains only one fragment

7 then return true {1,2,4,5,6} 1({4}, {2,5,6})

8

9 for each F € free 2({1,4,5}, {6})

10 do split — SPLIT(G',F)

11 foreach S € Wees(G' — F) {2,5,6} 2({5}, {61})

12 do if GRAPH-SOLVER-CHART(S) = false

13 then return false {3.6,7} 3({7}, {6})

14 add (G, split) to the chart

15 return true {1.4,5} 1({4}, {5})

10

Complexity

m Let G be a dominance graph with n nodes and m edges
m The computation of free fragments takes time O(n + m)

m The time to compute the chart is O(n(n + m) wcsg(G))

® wcsg(G) = the number of weakly connected subgraphs of G

m Worst case complexity in the number of nodes is O(n22")
= = big improvement compared to O(n2n!) of the basic solver

® (n! = upper bound for the number of solved forms)

11

Hypernormally Connected
Dominance Graphs

The big picture

m Every student reads a book
(1) Vx(student(x), dy(book(y), read(x, y))
(2) dy(book(y), Vx(student(x), read(x, y))

Vx

,A, (1) vx
i + 3y N\
A —_— :

vx 3y studenty ¢ ') studenty .,/\'
Pa A, 4 ! booky readyy
' * T A booky readyy
! LR S

studenty “booky,’
[} " \ 3
“ 4 y
v N, @) 3y
reads, P g , AN
° /x\ .
booky ¢ ? booky, ./\’
i i studenty readyy

studenty readyy

13

Simple solved forms

m We are usually interested only in solved forms in which
every hole is related to exactly one root

® |et’s call such solved forms “simple”

m Simple solved forms can be mapped to “proper” trees
simply by “plugging” the hole with the root connected to
it by a dominance edge.

Vx

/\ Vx

? ?
: ‘3 AN\
[] y [)

studenty 'A, g studenty ./\

[]
])
! ! booky readyy

booky readyy

14

Not all solved forms are simple

® Problem: g
Not all solved forms are simple I
A
m Solution:
Identify a class of dominance graphs o* ‘l;
that only have simple solved forms .

m = Hypernormally connected dominance graphs

15

Hypernormally connected

dominance graphs

® A hypernormal path in a (hormal) dominance graph G
is a path in the undirected version of G that does not
use two dominance edges incident to the same hole.

® A (normal) dominance graph G is hypernormally
connected if each pair of nodes is connected by some
hypernormal path.

16

Hypernormally connected

dominance graphs

®m Hypernormally connected:

Hypernormally connected
dominance graphs

m Not hypernormally connected:

Q o€ -9

18

Hypernormally connected

dominance graphs

® Lemma: if G is a hypenormally connected normal
dominance graph with free fragment F, then all WCCs of
G\F are hypernormally connected.

®m Proposition: if a normal dominance graph is
hypernormally connected, then all its (minimal) solved
forms are simple.

19

Tree Automata

(see Comon &al., 2007)

Bottom-up Tree Automaton

m A tree automaton is a tuple A = (Q, Z, Qs, A)

® 3 a finite ranked signature

® Q a finite set of states

Qr € Q a finite set of final (accepting) states
® A a finite set of transition rules
® Transition rules:

m f(qi(x1), ..., Qn(Xn)) = q(f(x1, ..., Xn))
m fex

u qr q1; ey anQ

® X1, ..., Xn different variables

21

An Example Computation

® Q= {0q3 g4 ...}, 2 = {3Ix}2, bookyo, ...}, Qr = {Qq12345}

Ax(q3(X1), g245(X2)) = Qq12345(IX(X1, X2))
Ay (qa(X1), gs(x2)) = Qg2as(Iy(x1, X2))
studentx - gs(studentx)

booky = qa(booky)

readx,y = gs(readx.y)

Ix Ix Ix Ix q12345
studenty 3y - studenty 3y ., student,i/zly\A - studenty, q2‘45 _* X
booky, ready y qq readyy qf qf X studentXX
booky, booky ready y booky ready y booky ready y

22

Bottom-up Tree Automaton

m Atreetis accepted by an atomaton A = (Q, Z, Qf, A) if
= t-"q(t)

= g€Qr

m The language L(A) of trees recognized by A is the set
of trees accpeted by A.

23

Another Example

= Automaton (rules)

Ix(q3(X1), g245(x2)) = Qi2345(IX(X1, X2)) studentx - gs(studenty)

Ay(ga(X1), gi3s(X2)) = gi2345(y(X1, X2)) booky — ga(booky)
Ay(ga(x1), gs(x2)) = Qg24s5(Iy(x1, X2)) readx,y — gs(ready,y)
Ix(gz(x1), gs(x2)) = qizs(Ix(X1, X2))

m Accepted Trees:

stude.ntX ./\ bO(.)ky .A

@
booky, readyy studenty readyy

24

Back to dominance charts

dx dy
O ,/@\",
® Nad s
studenty *, booky,
R e
ready y

dominance chart

{1,2,3,4,5} 1({3}, {2,4,5})
2({4}, {1,3,5})
{2,4,5} 2({4}, {5})
{1,3,5} 1({3}, {5})

25

Compare

tree automaton

dominance chart

Ix(g3(x1), g245(X2)) = qa2345(Ix(x1, X2))
Jy(da(xa), di3s(X2)) = d123as(3y(x1, X2))
Jy(ga(x1), gs(x2)) = g2as(Iy(x1, X2))
Ix(ga(x1), gs(x2)) = qi3s(Ix(X1, X2))

studentx - gs(studentx)

booky — qga(booky)

readxy — Qgs(readx,y)

{1,2,3,4,5} 1({3}, {2.4,5})
2({4}, {1,3,5})
{2,4,5} 2({4}, {5}
{1,3,5} 1({3}, {5})

26

Charts = Tree automata

® Dominance charts can be seen as (or translated into)
tree automata

= ... provided that the original dominance graph is
hypernormally connected (why?)

27

Charts = Tree automata

m The class of recognizable languages is closed under
= Union
= Complement

® |ntersection

m = We can model certain inferences on the level of
dominance charts by intersecting regular tree languages

® Redundancy elimination

= Weakest readings

28

Redundancy Elimination
(very short)

Ambiguity, revisited

m A student reads a book

(1) Ix(student(x), dy(book(y), read(x, y))
(2) Jy(book(y), Ix(student(x), read(x, y))

Ix

Iy
'/\‘ 'A,
. \‘ . ’I
l ‘\ z I' /'
studenty ' booky .
. . \
\./
ready y

ax

3y
[
studenty .

L]
book, readyy

Iy
N\

booky, .A

®
student, readyy

30

Redundancy Elimination

m A student reads a book
(1) Ix(student(x), dy(book(y), read(x, y))
(2) dy(book(y), Ax(student(x), read(x, y))

m Readings (1) and (2) are logically equivalent!

® Basic idea:
® Model the relation between (1) and (2) by rewrite rules
® Translate the rewrite rules into a tree automaton

® Redundancy elimination = Intersection of regular tree
languages

31

(Koller & Thater, 2010)

Redundancy Elimination

I Sentence Rewrite Rules

Complement of the pre-
image of L(A) under M: n Tree Transducer M
trees that cannot be rewritten
into a reading

Redundancy elimination: W
readings that cannot be v (L(A))

rewritten into an equivalent
reading I

CT Tree Automaton
L(A’) = L(A) n T,'(L(A))

32

References

m Alexander Koller and Stefan Thater (2005). The
evolution of dominance constraint solvers [PDF]. In
Proceedings of the ACL Workshop on Software.

m Alexander Koller and Stefan Thater (2010). Computing
Weakest Readings [PDF]. In Proceedings of the 48th
Annual Meeting of the Association for Computational
Linguistics.

® Hubert Comon, Max Dauchet, Remi Gilleron, Florent
Jacquemard, Denis Lugiez, Christof Loding, Sophie Tison,
Marc Tommasi. Tree Automata, Techniques and
Applications. [PDF]

33

