Computational Linguistics Algorithms for Scope Underspecification

Dietrich Klakow & Stefan Thater FR 4.7 Allgemeine Linguistik (Computerlinguistik) Universität des Saarlandes

Summer 2012

Today

- Refining the solver from the last lecture
- Hypernormally connected dominance graphs
- Tree Automata (in a nutshell)
- Redundancy elimination (very short)

(Bodirsky &al., 2004)

Solving dominance graphs

solve(G = $\langle V, E \uplus D \rangle$) = (*)

choose a free fragment F of G else fail let $G_1, ..., G_k$ be the WCC's of G\F let $\langle V_i, E_i \uplus D_i \rangle = solve(G_i)$ return $\langle V, E \uplus D_1 \uplus \cdots \uplus D_k \uplus D' \rangle$

where D' are dominance edges that connect the holes of F with the solved form of one of the corresponding $G_{\rm i}$

(*) slightly simplified version, works only for connected normal dominance graphs

3

An Example

An Example: Run #1

An Example: Run #2

subgraph	free	WCCS
{1,,7}	3	{7}, {1,2,4,5,6}
{1,2,4,5,6}	1	{4}, {2,5,6}
{2,5,6}	2	{5}, {6}

6

An Example

Problem: The algorithm is applied twice to the subgraph {2,5,6}

subgraph	free	wccs
{1,,7}	1	{4}, {2,3,5,6,7}
{2,3,5,6,7}	3	{7}, {2,5,6}
{2,5,6}	2	{5}, {6}
subgraph	free	wccs
subgraph {1,,7}	free 3	wccs {7}, {1,2,4,5,6}
subgraph {1,,7} {1,2,4,5,6}	free 3 1	wccs {7}, {1,2,4,5,6} {4}, {2,5,6}

Chart-based solver

- Basic idea: use dynamic programmic techniques and store intermediate results in a chart-like datastructure
- The chart records how graphs are decomposed into smaller subgraphs if free fragments are removed
 - The chart assigns each subgraph a "split."
 - Splits consist of (references to) a free fragment F and the weakly connected components of G\F.
 - Notation: F(G₁, ..., G_n)

(Koller & Thater, 2005)

The algorithm

 $\mathsf{GRAPH}\text{-}\mathsf{SOLVER}\text{-}\mathsf{CHART}(G')$

- 1 if there is an entry for G' in the chart
- 2 then return true

```
3 free \leftarrow Free-Fragments(G')
```

- 4 **if** *free* = \emptyset
- 5 then return false
- 6 if G' contains only one fragment
- 7 **then return true**
- 8
- 9 **for** each $F \in free$
- 10 **do** split \leftarrow SPLIT(G', F)
- 11 for each $S \in WCCS(G' F)$
- 12 **do if** GRAPH-SOLVER-CHART(S) = false
- 13 then return false
- 14 add (G', split) to the chart
- 15 return true

An Example

GRAPH-SOLVER-CHART(G')
1 if there is an entry for G' in the chart
2 then return true
3 <i>free</i> \leftarrow Free-Fragments(G')
4 if $free = \emptyset$
5 then return false
6 if G' contains only one fragment
7 then return true
8
9 for each $F \in free$
10 do split \leftarrow SPLIT (G', F)
11 for each $S \in WCCS(G' - F)$
12 do if GRAPH-SOLVER-CHART (S) = false
13 then return false
14 add $(G', split)$ to the chart
15 return true

subgraph	splits
{1,,7}	1({4}, {2,3,5,6,7})
	2({1,4,5}, {3,6,7})
	3({1,2,4,5,6}, {7})
{2,3,5,6,7}	2({5}, {3,6,7})
	3({2,5,6}, {7})
{1,2,4,5,6}	1({4}, {2,5,6})
	2({1,4,5}, {6})
{2,5,6}	2({5}, {6})
{3,6,7}	3({7}, {6})
{1,4,5}	1({4}, {5})

Complexity

- Let G be a dominance graph with n nodes and m edges
- The computation of free fragments takes time O(n + m)
- The time to compute the chart is O(n(n + m) wcsg(G))
 - wcsg(G) = the number of weakly connected subgraphs of G
- Worst case complexity in the number of nodes is O(n²2ⁿ)
 - \Rightarrow big improvement compared to O(n²n!) of the basic solver
 - (n! = upper bound for the number of solved forms)

Hypernormally Connected Dominance Graphs

The big picture

- Every student reads a book
 - (1) $\forall x(student(x), \exists y(book(y), read(x, y))$
 - (2) $\exists y(book(y), \forall x(student(x), read(x, y))$

Simple solved forms

- We are usually interested only in solved forms in which every hole is related to exactly one root
 - let's call such solved forms "simple"
- Simple solved forms can be mapped to "proper" trees simply by "plugging" the hole with the root connected to it by a dominance edge.

Not all solved forms are simple

Problem:

Not all solved forms are simple

 Solution: Identify a class of dominance graphs that only have simple solved forms

■ ⇒ Hypernormally connected dominance graphs

15

Hypernormally connected dominance graphs

- A hypernormal path in a (normal) dominance graph G is a path in the undirected version of G that does not use two dominance edges incident to the same hole.
- A (normal) dominance graph G is hypernormally connected if each pair of nodes is connected by some hypernormal path.

Hypernormally connected dominance graphs

Hypernormally connected dominance graphs

Not hypernormally connected:

Hypernormally connected dominance graphs

- Lemma: if G is a hypenormally connected normal dominance graph with free fragment F, then all WCCs of G\F are hypernormally connected.
- Proposition: if a normal dominance graph is hypernormally connected, then all its (minimal) solved forms are simple.

Tree Automata

(see Comon &al., 2007)

21

Bottom-up Tree Automaton

- A tree automaton is a tuple $A = \langle Q, \Sigma, Q_f, \Delta \rangle$
 - Σ a finite ranked signature
 - Q a finite set of states
 - $Q_f \subseteq Q$ a finite set of final (accepting) states
 - Δ a finite set of transition rules

Transition rules:

- $f(q_1(x_1), ..., q_n(x_n)) \rightarrow q(f(x_1, ..., x_n))$
 - $f \in \Sigma$
 - $\bullet q, q_1, ..., q_n \in Q$
 - x₁, ..., x_n different variables

An Example Computation

• $Q = \{q_3, q_4, ...\}, \Sigma = \{\exists x_{|2}, book_{y|0}, ...\}, Q_f = \{q_{12345}\}$

Bottom-up Tree Automaton

- A tree t is **accepted** by an atomaton $A = \langle Q, \Sigma, Q_f, \Delta \rangle$ if
 - t →* q(t)
 - $q \in Q_f$
- The language L(A) of trees recognized by A is the set of trees accpeted by A.

Another Example

Back to dominance charts

Compare

tree automaton

$$\exists x(q_3(x_1), q_{245}(x_2)) \rightarrow q_{12345}(\exists x(x_1, x_2))$$

$$\exists y(q_4(x_1), q_{135}(x_2)) \rightarrow q_{12345}(\exists y(x_1, x_2))$$

$$\exists y(q_4(x_1), q_5(x_2)) \rightarrow q_{245}(\exists y(x_1, x_2))$$

$$\exists x(q_3(x_1), q_5(x_2)) \rightarrow q_{135}(\exists x(x_1, x_2))$$

student_x
$$\rightarrow$$
 q₃(student_x)

$$book_y \rightarrow q_4(book_y)$$

 $read_{x,y} \rightarrow q_5(read_{x,y})$

dominance chart

$$\{1,2,3,4,5\}$$
 1($\{3\},\{2,4,5\}$)

2({4}, {1,3,5})

{2,4,5} 2({4}, {5})

 $\{1,3,5\}\ 1(\{3\},\{5\})$

Charts = Tree automata

- Dominance charts can be seen as (or translated into) tree automata
 - ... provided that the original dominance graph is hypernormally connected (why?)

Charts = Tree automata

- The class of recognizable languages is closed under
 - Union
 - Complement
 - Intersection
- ⇒ We can model certain inferences on the level of dominance charts by intersecting regular tree languages
 - Redundancy elimination
 - Weakest readings

Redundancy Elimination (very short)

Ambiguity, revisited

- A student reads a book
 - (1) ∃x(student(x), ∃y(book(y), read(x, y))
 - (2) $\exists y(book(y), \exists x(student(x), read(x, y))$

Redundancy Elimination

- A student reads a book
 - (1) ∃x(student(x), ∃y(book(y), read(x, y))
 - (2) $\exists y(book(y), \exists x(student(x), read(x, y))$
- Readings (1) and (2) are logically equivalent!

Basic idea:

- Model the relation between (1) and (2) by rewrite rules
- Translate the rewrite rules into a tree automaton
- Redundancy elimination = Intersection of regular tree languages

References

- Alexander Koller and Stefan Thater (2005). The evolution of dominance constraint solvers [PDF]. In Proceedings of the ACL Workshop on Software.
- Alexander Koller and Stefan Thater (2010). Computing Weakest Readings [PDF]. In Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics.
- Hubert Comon, Max Dauchet, Remi Gilleron, Florent Jacquemard, Denis Lugiez, Christof Löding, Sophie Tison, Marc Tommasi. Tree Automata, Techniques and Applications. [PDF]