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Today

■ Refining the solver from the last lecture

■ Hypernormally connected dominance graphs

■ Tree Automata (in a nutshell)

■ Redundancy elimination (very short)
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Solving dominance graphs

solve(G = ⟨V, E ⊎ D⟩) = (*)

choose a free fragment F of G else fail
let G1, …, Gk be the WCC’s of G\F
let ⟨Vi, Ei ⊎ Di⟩ = solve(Gi)
return ⟨V, E ⊎ D1 ⊎ ⋯ ⊎ Dk ⊎ D’⟩

where D’ are dominance edges that connect the holes of F 
with the solved form of one of the corresponding Gi 

(*) slightly simplified version, works only for connected normal dominance graphs
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(Bodirsky &al., 2004)

An Example

■ Every researcher of a company saw a sample. 
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An Example: Run #1
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subgraph free wccs

{1,…,7} 1 {4}, {2,3,5,6,7}

{2,3,5,6,7} 3  {7}, {2,5,6}

{2,5,6} 2 {5}, {6}
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4 5 6 7
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1 2 3

4 5 6 7

An Example: Run #2
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subgraph free wccs

{1,…,7} 3 {7}, {1,2,4,5,6}

{1,2,4,5,6} 1 {4}, {2,5,6}

{2,5,6} 2 {5}, {6}

1 2 3

4 5 6 7

1 2 3

4 5 6 7

1 2 3

4 5 6 7

1 2 3

4 5 6 7



An Example
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subgraph free wccs

{1,…,7} 3  {7}, {1,2,4,5,6}

{1,2,4,5,6} 1 {4}, {2,5,6}

{2,5,6} 2 {5}, {6}

subgraph free wccs

{1,…,7} 1 {4}, {2,3,5,6,7}

{2,3,5,6,7} 3 {7}, {2,5,6}

{2,5,6} 2 {5}, {6}

1 2 3

4 5 6 7

1 2 3

4 5 6 7

Problem: The algorithm 
is applied twice to the 
subgraph {2,5,6}

Chart-based solver

■ Basic idea: use dynamic programmic techniques and 
store intermediate results in a chart-like datastructure

■ The chart records how graphs are decomposed into 
smaller subgraphs if free fragments are removed
■ The chart assigns each subgraph a “split.”
■ Splits consist of (references to) a free fragment F and the 

weakly connected components of G\F. 
■ Notation: F(G1, …, Gn)
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The algorithm
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(Koller & Thater, 2005)

An Example
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subgraph splits

{1,…,7} 1({4}, {2,3,5,6,7})

2({1,4,5}, {3,6,7})

3({1,2,4,5,6}, {7}⟩

{2,3,5,6,7} 2({5}, {3,6,7})

3({2,5,6}, {7})

{1,2,4,5,6} 1({4}, {2,5,6})

2({1,4,5}, {6})

{2,5,6} 2({5}, {6})

{3,6,7} 3({7}, {6})

{1,4,5} 1({4}, {5})
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1 2 3

4 5 6 7
2({1,4,5}, {3,6,7})

2({5}, {3,6,7})

3({2,5,6}, {7})

1({4}, {2,5,6})

2({1,4,5}, {6})



Complexity
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■ Let G be a dominance graph with n nodes and m edges

■ The computation of free fragments takes time O(n + m)

■ The time to compute the chart is O(n(n + m) wcsg(G))
■ wcsg(G) = the number of weakly connected subgraphs of G

■ Worst case complexity in the number of nodes is O(n22n)
■ ⇒ big improvement compared to O(n2n!) of the basic solver 
■ (n! = upper bound for the number of solved forms)

Hypernormally Connected 
Dominance Graphs



The big picture

■ Every student reads a book
(1) ∀x(student(x), ∃y(book(y), read(x, y))

(2) ∃y(book(y), ∀x(student(x), read(x, y))

13

studentx booky

!x

readx,y

"y studentx

booky

!x

readx,y

"y

studentx

booky
!x

readx,y

"y

studentx
booky

!x

readx,y

"y
(1)

studentx

booky

!x

readx,y

"y(2)

Simple solved forms

■ We are usually interested only in solved forms in which 
every hole is related to exactly one root
■ let’s call such solved forms “simple”

■ Simple solved forms can be mapped to “proper” trees 
simply by “plugging” the hole with the root connected to 
it by a dominance edge.
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■ Problem: 
Not all solved forms are simple

■ Solution:
Identify a class of dominance graphs  
that only have simple solved forms

■ ⇒ Hypernormally connected dominance graphs

Not all solved forms are simple
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Hypernormally connected 
dominance graphs

■ A hypernormal path in a (normal) dominance graph G 
is a path in the undirected version of G that does not 
use two dominance edges incident to the same hole.

■ A (normal) dominance graph G is hypernormally 
connected if each pair of nodes is connected by some 
hypernormal path.
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Hypernormally connected 
dominance graphs

■ Hypernormally connected:
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Hypernormally connected 
dominance graphs

■ Not hypernormally connected:
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Hypernormally connected 
dominance graphs

■ Lemma: if G is a hypenormally connected normal 
dominance graph with free fragment F, then all WCCs of 
G\F are hypernormally connected.

■ Proposition: if a normal dominance graph is 
hypernormally connected, then all its (minimal) solved 
forms are simple.
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Tree Automata



Bottom-up Tree Automaton

■ A tree automaton is a tuple A = ⟨Q, Σ, Qf, Δ⟩
■ Σ a finite ranked signature
■ Q a finite set of states
■ Qf ⊆ Q a finite set of final (accepting) states
■ Δ a finite set of transition rules

■ Transition rules:
■ f(q1(x1), …, qn(xn)) → q(f(x1, …, xn))

■ f ∈ Σ
■ q, q1, …, qn ∈ Q
■ x1, …, xn different variables
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(see Comon &al., 2007)

An Example Computation

■ Q = {q3, q4, …}, Σ = {∃x|2, booky|0, …}, Qf = {q12345}
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*

/∃x(q3(x1), q245(x2))/→ q12345(∃x(x1, x2))
/ ∃y(q4(x1), q5(x2))/→ q245(∃y(x1, x2))
/ studentx/→ q3(studentx)
/ booky/→ q4(booky)
/ readx,y/→ q5(readx,y)



Bottom-up Tree Automaton

■ A tree t is accepted by an atomaton A = ⟨Q, Σ, Qf, Δ⟩ if 
■ t →* q(t)
■ q ∈ Qf

■ The language L(A) of trees recognized by A is the set 
of trees accpeted by A.
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Another Example

■ Automaton (rules)

■ Accepted Trees:
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/ ∃x(q3(x1), q245(x2))/→ q12345(∃x(x1, x2))
/ ∃y(q4(x1), q135(x2))/→ q12345(∃y(x1, x2))
/ ∃y(q4(x1), q5(x2))/→ q245(∃y(x1, x2))
/ ∃x(q3(x1), q5(x2))/→ q135(∃x(x1, x2))

studentx
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/studentx/ → q3(studentx)
/ booky/ → q4(booky)
/ readx,y/ → q5(readx,y)



Back to dominance charts
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dominance chartdominance chart

{1,2,3,4,5} 1({3}, {2,4,5})

2({4}, {1,3,5})

{2,4,5} 2({4}, {5})

{1,3,5} 1({3}, {5})

Compare
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dominance chartdominance chart

{1,2,3,4,5} 1({3}, {2,4,5})

2({4}, {1,3,5})

{2,4,5} 2({4}, {5})

{1,3,5} 1({3}, {5})

tree automaton

/ ∃x(q3(x1), q245(x2))/ → q12345(∃x(x1, x2))

/ ∃y(q4(x1), q135(x2))/ → q12345(∃y(x1, x2))

/ ∃y(q4(x1), q5(x2))/ → q245(∃y(x1, x2))

/ ∃x(q3(x1), q5(x2))/ → q135(∃x(x1, x2))

/ studentx/ → q3(studentx)

/ booky/ → q4(booky)

/ readx,y/ → q5(readx,y)



Charts = Tree automata
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■ Dominance charts can be seen as (or translated into) 
tree automata
■ … provided that the original dominance graph is 

hypernormally connected (why?)

Charts = Tree automata

■ The class of recognizable languages is closed under
■ Union
■ Complement 
■ Intersection 

■ ⇒ We can model certain inferences on the level of 
dominance charts by intersecting regular tree languages
■ Redundancy elimination
■ Weakest readings
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Redundancy Elimination
(very short)

Ambiguity, revisited

■ A student reads a book
(1) ∃x(student(x), ∃y(book(y), read(x, y))

(2) ∃y(book(y), ∃x(student(x), read(x, y))
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Redundancy Elimination

■ A student reads a book
(1) ∃x(student(x), ∃y(book(y), read(x, y))

(2) ∃y(book(y), ∃x(student(x), read(x, y))

■ Readings (1) and (2) are logically equivalent!

■ Basic idea:
■ Model the relation between (1) and (2) by rewrite rules
■ Translate the rewrite rules into a tree automaton
■ Redundancy elimination = Intersection of regular tree 

languages
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Redundancy Elimination
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Sentence

Tree Automaton

Rewrite Rules

Tree Transducer M

τM-1(L(A))

Tree Automaton
L(Aʼ) = L(A) ∩ τM-1(L(A))

Complement of the pre-
image of L(A) under M: 
trees that cannot be rewritten 
into a reading

Redundancy elimination: 
readings that cannot be 
rewritten into an equivalent 
reading

(Koller & Thater, 2010)
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