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Overview
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■ Some basic assumptions about sentence meaning

■ Scope ambiguities

■ Modelling scope ambiguities with dominance graphs

■ An algorithm for solving dominance graphs

Sentence meaning – Assumptions

■ Truth-functional interpretation: The meaning of a 
declarative sentence is given by its truth conditions

■ ⇒ we can represent the meaning of natural language 
sentences by logical formula that “capture” the truth-
conditions of the original sentence.

■ Every student works ↦ ∀x(student(x) → work(x))
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Sentence meaning – Assumptions

■ Compositionality: The meaning of a complex 
expression is a function of the meanings of its parts and 
of the syntactic rules by which they are combined

■ Compositional semantic construction based on the 
syntactic tree of the natural language expression
■ The semantic lexicon assigns meaning representations to 

lexical (leaf) nodes of the syntax tree.
■ The semantic representation of an inner node is computed 

by combining the representations of its child nodes.
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Compositional Semantics 
Construction
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Compositional Semantics 
Construction

■ Compositionality: The meaning of a complex expression 
is a function of the meanings of its parts and of the 
syntactic rules by which they are combined

■ ⇒ Every syntax tree is mapped to a unique 
semantic representation
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Ambiguities

■ Natural language is ambiguous: a sentence can have 
more than one interpretation (“reading”).

■ Lexical ambiguities
■ Iraqi head seeks arms

■ Structural ambiguities
■ Enraged cow injures farmer with axe
■ The salesman sold the dog biscuits
■ Every student reads a book
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Scope Ambiguities

■ Scope ambiguities can arise when a sentence contains 
two or more quantifiers and/or other scope-taking 
operators (negations, modal expressions, etc.)

■ Every student reads a book
■ ∀x(student(x) → ∃y(book(y) ∧ read(x, y)))' ' ' ' [∀∃]
■ ∃y(book(y) ∧ ∀x(student(x) → read(x, y)))' ' ' ' [∃∀]
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Scope Ambiguities – Problem #1

■ The approach outlined before will give us just one 
reading (the “surface scope reading”)

■ Problem: How to compute the ∃∀ reading?
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Scope Ambiguities – Problem #2

■ Combinatorial explosion of readings: The number of 
readings of a sentence can grow exponentially in the 
number of scope-taking operators it contains.

■ Every student reads a book ⇒ 2 readings

■ Every student reads a book about an interesting topic
⇒ 5 readings (some of which are logically equivalent)

■ We quickly put up the tents in the lee of a small hillside 
and cook for the first time in the open
⇒ 480 readings* (most of which are logically equivalent)
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Scope Ambiguities – Problem #2

■ Number of readings in a “real-live” corpus according to 
the English Resource Grammar (Koller &al., ACL 2008)
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Coping with scope – Options

(1) Ignore scope ambiguities
■ for instance, always compute the “surface scope” reading

(2) Enumerate all readings and then select the “right” one
■ we need more complex semantics construction rules and a 

method to choose the “right” reading
■ computationally very expensive, since sentences can easily 

have millions of readings

(3) Use scope underspecification 
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Scope Underspecification

■ Don’t explicity enumerate readings

■ Instead, represent all readings of a sentence by a single 
compact underspecifed representation (USR).

■ The individual readings can be enumerated from the 
underspecified representation if needed (this lecture).

■ We can perform inferences directly on the level of 
underspecified representations (next lecture).
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A notational change

■ Every student reads a book
■ ∀x(student(x), ∃y(book(y), read(x, y)))
■ ∃y(book(y), ∀x(student(x), read(x, y))) 

■ Abbreviations:
■ ∀x(X, Y) abbreviates ∀x(X → Y)
■ ∃x(X, Y) abbreviates ∃x(X ∧ Y)
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Readings = Trees

■ Every student reads a book
(1) ∀x(student(x), ∃y(book(y), read(x, y)))

(2) ∃y(book(y), ∀x(student(x), read(x, y))) 

■ Represent readings as trees:
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Dominance Graphs (informal)

■ Dominance graphs consist of 
■ “tree fragments” connected by 
■ dominance edges

■ Tree fragments (solid lines) 
specify the “semantic material” 
that is common to all readings

■ Dominance edges (dotted lines) specify constraints: The 
upper node must dominate the lower one.

■ Subclass of “normal” dominance graphs: dominance 
edges always go from leaves (“holes”) to roots.
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Normal Dominance Graphs

■ A normal dominance graph is a graph G = ⟨V, E ⊎ D⟩ 
such that 
■ the subgraph ⟨V, E⟩ is a collection of node disjoint trees 

where the height of each tree is ≤ 1

we call the roots in ⟨V, E⟩ roots and all other nodes holes
■ if ⟨v1, v2⟩ ∈ D, then v1 is a hole and v2 a root
■ every hole has at least one outgoing dominance edge. 
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Normal Dominance Graphs

■ A normal dominance graph is a graph G = ⟨V, E ⊎ D⟩ 
such that 
■ the subgraph ⟨V, E⟩ is a collection of node disjoint trees 

where the height of each tree is ≤ 1

we call the roots in ⟨V, E⟩ roots and all other nodes holes
■ if ⟨v1, v2⟩ ∈ D, then v1 is a hole and v2 a root
■ every hole has at least one outgoing dominance edge. 

■ A labelled dominance graph is a graph ⟨V, E ⊎ D, L⟩ 
such that
■ ⟨V, E ⊎ D⟩ is a (normal) dominance graph and
■ L is a labelling function that assigns a node v a label with 

arity n iff v is a root with n outgoing tree edges
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Solved Forms

■ A dominance graph G is in solved form if G is a forest

■ Let G = ⟨V, E ⊎ D⟩ and G’ = ⟨V, E ⊎ D’⟩

We say that G’ is a solved form of G if G’ is in solved 
form and the reachability relation of G’ extends that of G

That is: whenever v1 and v2 are connected by some 
dominance edge in G’, there must be a directed path 
from v1 to v2 in G.

■ Note that dominance graphs and their solved forms 
differ only in their sets of dominance edges.

■ Note also that the solved forms of connected dominance 
graphs are always trees.
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Solved Forms – Example
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Not a solved form of
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Computational Questions

■ The solvability problem:
Does a given dominance graph have any solved forms?

■ The enumeration problem:
Given a dominance graph, enumerate all its (minimal) 
solved forms.

■ We will discuss the algorithm by Bodirsky &al. (2004)

■ To keep things simple, we restrict the presentation to 
connected dominance graphs.
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Solving dominance graphs

■ The algorithm of Bodirsky &al. (2004) constructs a 
solved form of a dominance graph G as follows:
1. nondeterministically choose a “free fragment” F from G

2. remove F from G; this decomposes the graph G into weakly 
connected components G1, …, Gk

3. recursively compute a solved form for G1, …, Gk

4. attach the solved form of Gi under the corresponding hole 
of the free fragment F (for 1 ≤ i ≤ k)
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(Bodirsky &al., 2004)

Free Fragments

■ The workhorse of the algorithm is the notion of a “free 
fragment.”

■ We say that a fragment F is free in a normal 
dominance graph G iff
■ the root of F has no incoming dominance edges, and
■ no distinct holes of F are connected by an undirected path 

in the graph G’ obtained from G by removing the root of F

■ It can be shown that the following statements are 
equivalent if G is solvable (normal) dominance graph:
■ F is a free fragment in G
■ G has a solved form with top-most fragment F
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Free Fragments: An Example
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Solving dominance graphs

solve(G = ⟨V, E ⊎ D⟩) = (*)

choose a free fragment F of G else fail
let G1, …, Gk be the WCCs of G\F
let ⟨Vi, Ei ⊎ Di⟩ = solve(Gi)
return ⟨V, E ⊎ D1 ⊎ ⋯ ⊎ Dk ⊎ D’⟩

where D’ are dominance edges that connect the holes of F 
with the solved form of one of the corresponding Gi 

(*) slightly simplified version, works only for connected normal dominance graphs
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(Bodirsky &al., 2004)

An Example

■ Underspecified representation for the sentence “every 
researcher of a company sees a sample:”
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An Example
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■ ∀x(∃z(comp(z), res-of(x,z)), ∃y(sample(y), see(x, y)))

The final solved form
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Properties of the solver

■ It can be shown that the following statements are 
equivalent:
■ solve(G) fails for some nondeterministic choice
■ G is not solvable
■ solve(G) fails for all nondeterministic choices
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Properties of the solver

■ We can test whether a fragment is free in time O(n + m)
■ where n is the number of nodes and
■ m the number of edges in a dominance graph G. 

■ The overall running time of solve(G) is in O(n · (n + m)) 
per solved-form.
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