
Computational Linguistics
Algorithms for Scope Underspecification

Dietrich Klakow & Stefan Thater
FR 4.7 Allgemeine Linguistik (Computerlinguistik)
Universität des Saarlandes

Summer 2012

What this lecture is about

2

studentx booky

!x

readx,y

"y
studentx

booky

!x

readx,y

"y

studentx

booky

!x

readx,y

"y

Overview

3

■ Some basic assumptions about sentence meaning

■ Scope ambiguities

■ Modelling scope ambiguities with dominance graphs

■ An algorithm for solving dominance graphs

Sentence meaning – Assumptions

■ Truth-functional interpretation: The meaning of a
declarative sentence is given by its truth conditions

■ ⇒ we can represent the meaning of natural language
sentences by logical formula that “capture” the truth-
conditions of the original sentence.

■ Every student works ↦ ∀x(student(x) → work(x))

4

Sentence meaning – Assumptions

■ Compositionality: The meaning of a complex
expression is a function of the meanings of its parts and
of the syntactic rules by which they are combined

■ Compositional semantic construction based on the
syntactic tree of the natural language expression
■ The semantic lexicon assigns meaning representations to

lexical (leaf) nodes of the syntax tree.
■ The semantic representation of an inner node is computed

by combining the representations of its child nodes.

5

Compositional Semantics
Construction

6

S
!x(student(x) " #y(book(y) $ read(x, y))

NP
%P!x(student(x) " P(x))

VP
%z#y(book(y) $ read(z, y))

V
%Q%zQ(%w.read(z, w))

NP
%G#y(book(y) $ G(x))

Every student

reads N
book

DET
%F%G#y(F(y) $ G(x))

a book

f1(EVERY’, STUDENT’)’

V’

A’ BOOK’

f1(A’, BOOK’)

f2(V’, f1(A’, BOOK’))

f3(f1(EVERY’, STUDENT’)’, f2(V’, f1(DET’, BOOK’)))

Compositional Semantics
Construction

6

S
!x(student(x) " #y(book(y) $ read(x, y))

NP
%P!x(student(x) " P(x))

VP
%z#y(book(y) $ read(z, y))

V
%Q%zQ(%w.read(z, w))

NP
%G#y(book(y) $ G(x))

Every student

reads N
book

DET
%F%G#y(F(y) $ G(x))

a book

Compositional Semantics
Construction

■ Compositionality: The meaning of a complex expression
is a function of the meanings of its parts and of the
syntactic rules by which they are combined

■ ⇒ Every syntax tree is mapped to a unique
semantic representation

7

Ambiguities

■ Natural language is ambiguous: a sentence can have
more than one interpretation (“reading”).

■ Lexical ambiguities
■ Iraqi head seeks arms

■ Structural ambiguities
■ Enraged cow injures farmer with axe
■ The salesman sold the dog biscuits
■ Every student reads a book

8

Scope Ambiguities

■ Scope ambiguities can arise when a sentence contains
two or more quantifiers and/or other scope-taking
operators (negations, modal expressions, etc.)

■ Every student reads a book
■ ∀x(student(x) → ∃y(book(y) ∧ read(x, y)))' ' ' ' [∀∃]
■ ∃y(book(y) ∧ ∀x(student(x) → read(x, y)))' ' ' ' [∃∀]

9

Scope Ambiguities – Problem #1

■ The approach outlined before will give us just one
reading (the “surface scope reading”)

■ Problem: How to compute the ∃∀ reading?

10

S
!x(student(x) " #y(book(y) $ read(x, y))

NP
%P!x(student(x) " P(x))

VP
%z#y(book(y) $ read(z, y))

V
%Q%zQ(%w.read(z, w))

NP
%G#y(book(y) $ G(x))

Every student

reads N
book

DET
%F%G#y(F(y) $ G(x))

a book

Scope Ambiguities – Problem #2

■ Combinatorial explosion of readings: The number of
readings of a sentence can grow exponentially in the
number of scope-taking operators it contains.

■ Every student reads a book ⇒ 2 readings

■ Every student reads a book about an interesting topic
⇒ 5 readings (some of which are logically equivalent)

■ We quickly put up the tents in the lee of a small hillside
and cook for the first time in the open
⇒ 480 readings* (most of which are logically equivalent)

11
* according to the English Resource Grammar

Scope Ambiguities – Problem #2

■ Number of readings in a “real-live” corpus according to
the English Resource Grammar (Koller &al., ACL 2008)

12

1E+00

1E+02

1E+04

1E+06

1E+08

1E+10

1E+12

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33
0

10

20

30

40

50

60

70
readings
sentences of size n

Coping with scope – Options

(1) Ignore scope ambiguities
■ for instance, always compute the “surface scope” reading

(2) Enumerate all readings and then select the “right” one
■ we need more complex semantics construction rules and a

method to choose the “right” reading
■ computationally very expensive, since sentences can easily

have millions of readings

(3) Use scope underspecification

13

Scope Underspecification

■ Don’t explicity enumerate readings

■ Instead, represent all readings of a sentence by a single
compact underspecifed representation (USR).

■ The individual readings can be enumerated from the
underspecified representation if needed (this lecture).

■ We can perform inferences directly on the level of
underspecified representations (next lecture).

14

Sentence Syntactic
analysis

Underspecified
representation

reading #1

reading #n

…

A notational change

■ Every student reads a book
■ ∀x(student(x), ∃y(book(y), read(x, y)))
■ ∃y(book(y), ∀x(student(x), read(x, y)))

■ Abbreviations:
■ ∀x(X, Y) abbreviates ∀x(X → Y)
■ ∃x(X, Y) abbreviates ∃x(X ∧ Y)

15

Readings = Trees

■ Every student reads a book
(1) ∀x(student(x), ∃y(book(y), read(x, y)))

(2) ∃y(book(y), ∀x(student(x), read(x, y)))

■ Represent readings as trees:

16

studentx
booky

!x

readx,y

"y
(1)

studentx

booky

!x

readx,y

"y(2)

Dominance Graphs (informal)

■ Dominance graphs consist of
■ “tree fragments” connected by
■ dominance edges

■ Tree fragments (solid lines)
specify the “semantic material”
that is common to all readings

■ Dominance edges (dotted lines) specify constraints: The
upper node must dominate the lower one.

■ Subclass of “normal” dominance graphs: dominance
edges always go from leaves (“holes”) to roots.

17

studentx booky

!x

readx,y

"y

Normal Dominance Graphs

■ A normal dominance graph is a graph G = ⟨V, E ⊎ D⟩
such that
■ the subgraph ⟨V, E⟩ is a collection of node disjoint trees

where the height of each tree is ≤ 1

we call the roots in ⟨V, E⟩ roots and all other nodes holes
■ if ⟨v1, v2⟩ ∈ D, then v1 is a hole and v2 a root
■ every hole has at least one outgoing dominance edge.

18

Normal Dominance Graphs

■ A normal dominance graph is a graph G = ⟨V, E ⊎ D⟩
such that
■ the subgraph ⟨V, E⟩ is a collection of node disjoint trees

where the height of each tree is ≤ 1

we call the roots in ⟨V, E⟩ roots and all other nodes holes
■ if ⟨v1, v2⟩ ∈ D, then v1 is a hole and v2 a root
■ every hole has at least one outgoing dominance edge.

■ A labelled dominance graph is a graph ⟨V, E ⊎ D, L⟩
such that
■ ⟨V, E ⊎ D⟩ is a (normal) dominance graph and
■ L is a labelling function that assigns a node v a label with

arity n iff v is a root with n outgoing tree edges
18

Solved Forms

■ A dominance graph G is in solved form if G is a forest

■ Let G = ⟨V, E ⊎ D⟩ and G’ = ⟨V, E ⊎ D’⟩

We say that G’ is a solved form of G if G’ is in solved
form and the reachability relation of G’ extends that of G

That is: whenever v1 and v2 are connected by some
dominance edge in G’, there must be a directed path
from v1 to v2 in G.

■ Note that dominance graphs and their solved forms
differ only in their sets of dominance edges.

■ Note also that the solved forms of connected dominance
graphs are always trees.

19

Solved Forms – Example

20

studentx booky

!x

readx,y

"y

studentx

booky

!x

readx,y

"y

studentx

booky
!x

readx,y

"y

dominance graph solved form #1 solved form #2

Not a solved form of

21

studentx booky

!x

readx,y

"y

dominance graph G not a solved form of G

studentx

booky

!x

readx,y

"y

Computational Questions

■ The solvability problem:
Does a given dominance graph have any solved forms?

■ The enumeration problem:
Given a dominance graph, enumerate all its (minimal)
solved forms.

■ We will discuss the algorithm by Bodirsky &al. (2004)

■ To keep things simple, we restrict the presentation to
connected dominance graphs.

22

Solving dominance graphs

■ The algorithm of Bodirsky &al. (2004) constructs a
solved form of a dominance graph G as follows:
1. nondeterministically choose a “free fragment” F from G

2. remove F from G; this decomposes the graph G into weakly
connected components G1, …, Gk

3. recursively compute a solved form for G1, …, Gk

4. attach the solved form of Gi under the corresponding hole
of the free fragment F (for 1 ≤ i ≤ k)

23

(Bodirsky &al., 2004)

Free Fragments

■ The workhorse of the algorithm is the notion of a “free
fragment.”

■ We say that a fragment F is free in a normal
dominance graph G iff
■ the root of F has no incoming dominance edges, and
■ no distinct holes of F are connected by an undirected path

in the graph G’ obtained from G by removing the root of F

■ It can be shown that the following statements are
equivalent if G is solvable (normal) dominance graph:
■ F is a free fragment in G
■ G has a solved form with top-most fragment F

24

Free Fragments: An Example

25

a

f

b

g

Free Fragments: An Example

25

a

f

b

g

not free

free

Solving dominance graphs

solve(G = ⟨V, E ⊎ D⟩) = (*)

choose a free fragment F of G else fail
let G1, …, Gk be the WCCs of G\F
let ⟨Vi, Ei ⊎ Di⟩ = solve(Gi)
return ⟨V, E ⊎ D1 ⊎ ⋯ ⊎ Dk ⊎ D’⟩

where D’ are dominance edges that connect the holes of F
with the solved form of one of the corresponding Gi

(*) slightly simplified version, works only for connected normal dominance graphs

26

(Bodirsky &al., 2004)

An Example

■ Underspecified representation for the sentence “every
researcher of a company sees a sample:”

27

seex,y

companyz researcher-ofx,z

!z

sampley

"x !y

An Example

28

1 2 3

4 5 6 7

An Example

28

1 2 3

4 5 6 7

subgraph free wccs

{1,…,7} 2 {1,4,5}, {3,6,7}

{1,4,5} 1 {4}, {5}

{3,6,7} 3 {6}, {7}

An Example

28

1 2 3

4 5 6 7

subgraph free wccs

{1,…,7} 2 {1,4,5}, {3,6,7}

{1,4,5} 1 {4}, {5}

{3,6,7} 3 {6}, {7}1 2 3

4 5 6 7

An Example

28

1 2 3

4 5 6 7

subgraph free wccs

{1,…,7} 2 {1,4,5}, {3,6,7}

{1,4,5} 1 {4}, {5}

{3,6,7} 3 {6}, {7}

1 2 3

4 5 6 7

1 2 3

4 5 6 7

■ ∀x(∃z(comp(z), res-of(x,z)), ∃y(sample(y), see(x, y)))

The final solved form

29

seex,ycompz res-ofx,z

!z

sampley

"x

!y

Properties of the solver

■ It can be shown that the following statements are
equivalent:
■ solve(G) fails for some nondeterministic choice
■ G is not solvable
■ solve(G) fails for all nondeterministic choices

30

Properties of the solver

■ We can test whether a fragment is free in time O(n + m)
■ where n is the number of nodes and
■ m the number of edges in a dominance graph G.

■ The overall running time of solve(G) is in O(n · (n + m))
per solved-form.

31

Literature

■ Alexander Koller, Manfred Pinkal, and Stefan Thater.
Scope Underspecification with Tree Descriptions: Theory
and Practice [PDF]. In: Resource Adaptive Cognitive
Processes. Ed. by Matthew Crocker and Jörg Siekmann.
Cognitive Technologies Series. Berlin: Springer. 2009.

■ Manuel Bodirsky, Denys Duchier, Joachim Niehren, and
Sebastian Miele (2004). A new algorithm for normal
dominance constraints [PDF]. In the proceedings of the
Symposium on Discrete Algorithms (SODA04), 59-67.

32

