Computational Linguistics Dependency-based Parsing

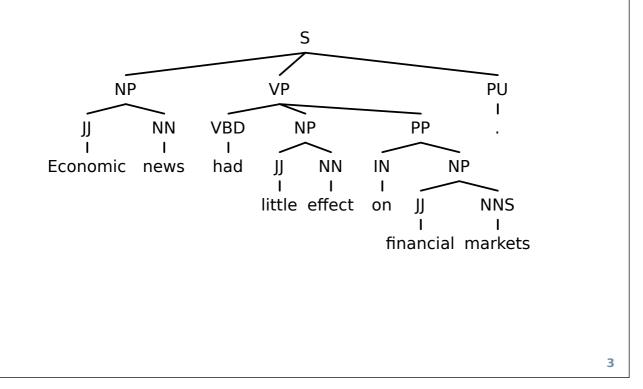
Dietrich Klakow & Stefan Thater FR 4.7 Allgemeine Linguistik (Computerlinguistik) Universität des Saarlandes

Summer 2012

Acknowledgements

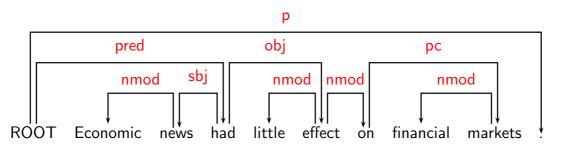
- These slides are heavily inspired by
 - an ESSLLI 2007 course by Joakim Nivre and Ryan McDonald
 - an ACL-COLING tutorial by Joakim Nivre and Sandra Kübler

Phrase-Structure Trees



Dependency Trees

- Basic idea:
 - Syntactic structure = lexical items linked by relations
 - Syntactic structures are usually trees (... but not always)
- Relations $H \rightarrow D$
 - H is the head (or governor)
 - D is the dependent

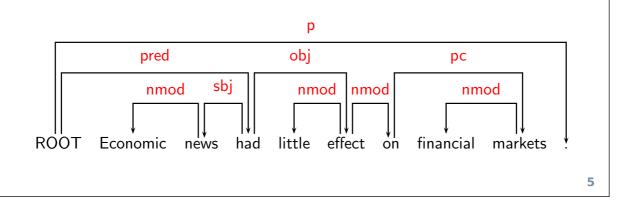


Dependency Trees

- Parsers
 - are easy to implement and evaluate

Dependency-based representations

- are suitable for free word order languages
- are often close to the predicate argument structure



Dependency Trees

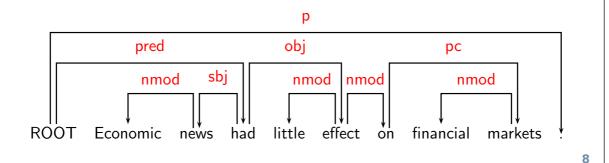
- Some criteria for dependency relations between a head H and a dependent D in a linguistic construction C:
 - H determines the syntactic category of C; H can replace C.
 - H determines the semantic category of C; D specifies H.
 - H is obligatory; D may be optional.
 - H selects D and determines whether D is obligatory.
 - The form of D depends on H (agreement or government).
 - The linear position of D is specified with reference to H.

Dependency Trees

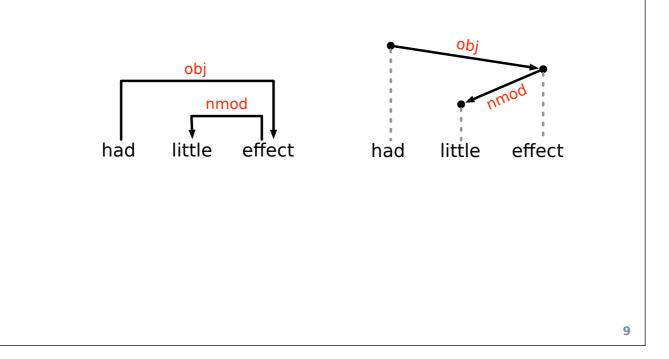
- Clear cases:
 - Subject, Object, …
- Less clear cases:
 - complex verb groups
 - subordinate clauses
 - coordination
 - **...**

Dependency Graphs

- Graph G = $\langle V, A, L, \rangle$
 - V = a set of vertices (nodes)
 - A = a set of arcs (directed edges)
 - L = a set of edge labels
 - < = a linear order on V</p>



Dependency Trees – Notation

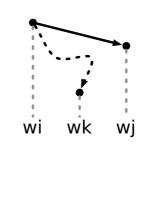


Dependency Graphs / Trees

- Formal conditions on dependency graphs:
 - G is weakly connected
 - G is acyclic
 - Every node in G has at most one head
 - G is projective

Projectivity

- A dependency graph G is projective iff
 - if $w_i \rightarrow w_j$, then $w_i \rightarrow^* w_k$ for all $w_i < w_k < w_j$ or $w_j < w_k < w_i$
 - if w_i is the head of w_j, then there must be a directed path from w_i to w_k, for all w_k between w_i and w_j.
- We need non-projectivity for
 - Iong distance dependencies
 - free word order



11

Projectivity р obj pred рс sbj nmod nmod nmod nmod markets ROOT Economic news had little effect financial ó'n рс р vg sbj obj prec nmod nmod nmod on ROOT What did economic news have little effect 12

Projectivity

Sentences	Dependencies
11.2%	0.4%
26.2%	2.9%
23.2%	1.9%
15.6%	1.0%
20.3%	1.1%
10.6%	0.9%
22.2%	1.9%
11.6%	1.5%
	26.2% 23.2% 15.6% 20.3% 10.6% 22.2%

Dependency-based Parsing

- Grammar-based
- Data-driven
 - Transition-based
 - Graph-based

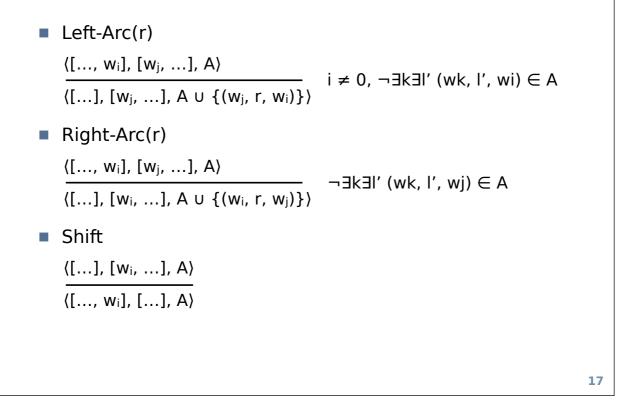
Transition-based Parsing

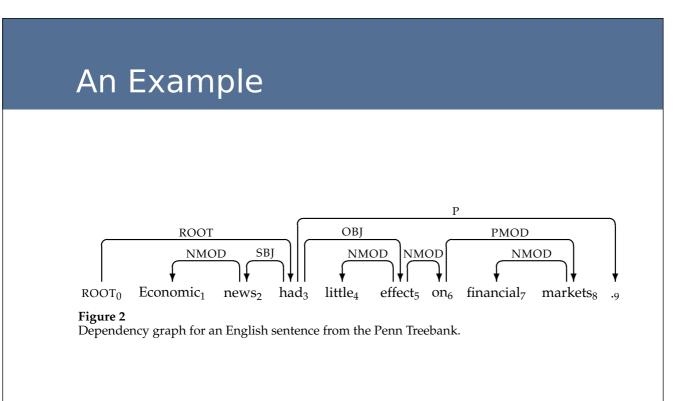
- Configurations (S, Q, A)
 - S = a stack of partially processed tokens (nodes)
 - Q = a queue of unprocessed input tokens
 - A = a set of dependency arcs
- Initial configuration for input w₁ ... w_n
- Terminal (accepting) configuration
 - (..., [], ...)

Transitions ("Arc-Standard")

- Left-Arc(r)
 - adds a dependency arc (w_j, r, w_i) to the arc set A, where w_i is the word on top of the stack and w_j is the first word in the buffer, and pops the stack.
- Right-Arc(r)
 - adds a dependency arc (w_i, r, w_j) to the arc set A, where w_i is the word on top of the stack and w_j is the first word in the buffer, pops the stack and replaces w_j by w_i at the head of buffer.

Transitionen ("Arc-Standard")





$LEFT-ARC_{NMOD} \Longrightarrow$ $SHIFT \Longrightarrow$ $SHIFT \Longrightarrow$ $SHIFT \Longrightarrow$ $LEFT-ARC_{NMOD} \Longrightarrow$ $RIGHT-ARC_{PMOD}^{s} \Longrightarrow$ $RIGHT-ARC_{OBJ}^{s} \Longrightarrow$ $RIGHT-ARC_{OBJ}^{s} \Longrightarrow$ $SHIFT \Longrightarrow$		$[0, \ldots, 7],$ $[0, \ldots 6],$ [0, 3, 5],	$[3, \dots, 9], \\ [3, \dots, 9], \\ [4, \dots, 9], \\ [5, \dots, 9], $))))))))))))))))))))))))))))))))))))	
1	(())	19

Deterministic Parsing

- oracle(c):
 - predicts the next transition
- parse(w₁ ... w_n):
 - $c := \langle [w_0 = ROOT], [w_1, ..., w_n], \{ \} \rangle$
 - while c is not terminal
 - t := oracle(c)
 - c := t(c)
 - return $G = \langle \{w_0, ..., w_n\}, A_c \rangle$

Deterministic Parsing

- Linear time complexity: the algorithm terminates after 2n steps for input sentences with n words.
- The algorithm is complete and correct for the class of projective dependency trees:
 - For every projective dependency tree T there is a sequence of transitions that generates T
 - Every sequence of transition steps generates a projective dependency tree
- Whether the resulting dependency tree is correct or not depends of course on the oracle.

The oracle

- Approximate the oracle by a classifier
- Represent configurations be feature vectors; for instance
 - lexical properties (word form, lemma)
 - category (part of speech)
 - labels of partial dependency trees
 - **...**

$\mathbf{f}(c_0)$	=	(root	Economic	news	NULL	NULL	NULL	NULL)
$\mathbf{f}(c_1)$	=	(Economic	news	had	NULL	NULL	NULL	NULL)
$\mathbf{f}(c_2)$	=	(root	news	had	NULL	NULL	ATT	NULL)
$\mathbf{f}(c_3)$	=	(news	had	little	ATT	NULL	NULL	NULL)
$\mathbf{f}(c_4)$	=	(root	had	little	NULL	NULL	SBJ	NULL)
$\mathbf{f}(c_5)$	=	(had	little	effect	SBJ	NULL	NULL	NULL)
$\mathbf{f}(c_6)$	=	(little	effect	on	NULL	NULL	NULL	NULL)
$\mathbf{f}(c_7)$	=	(had	effect	on	SBJ	NULL	ATT	NULL)
$\mathbf{f}(c_8)$	=	(effect	on	financial	ATT	NULL	NULL	NULL)
$\mathbf{f}(c_9)$	=	(on	financial	markets	NULL	NULL	NULL	NULL)
$f(c_{10})$	=	(financial	markets		NULL	NULL	NULL	NULL)
$f(c_{11})$	=	(on	markets		NULL	NULL	ATT	NULL)
$f(c_{12})$	=	(effect	on		ATT	NULL	NULL	ATT)
$f(c_{13})$	=	(had	effect		SBJ	NULL	ATT	ATT)
$f(c_{14})$	=	(ROOT	had	•	NULL	NULL	SBJ	OBJ)
$f(c_{15})$	=	(had	4.4	NULL	SBJ	OBJ	NULL	NULL)
$f(c_{16})$	=	(root	had	NULL	NULL	NULL	SBJ	PU)
$f(c_{17})$	=	(NULL	ROOT	NULL	NULL	NULL	NULL	PRED)
$f(c_{18})$	=	(root	NULL	NULL	NULL	PRED	NULL	NULL)

23

Non-projective Parsing

- Configurations (L1, L2, Q, A)
 - L₁, L₂ are stacks of partially processed nodes
 - Q = a queue of unprocessed input tokens
 - A = a set of dependency arcs
- Initial configuration for input w₁ ... w_n
- Terminal configuration:
 - <[w₀, w₁, ..., w_n], [], [], A>

Transitions

Left-Arc(I)

$\langle [, w_i], [], [w_j,], A \rangle$	i≠0
$\langle [], [w_i,], [w_j,], A \cup \{(w_j, I, w_i)\} \rangle$	¬∃k∃l′ (w _k , l′, w _i) ∈ A ¬ w _i →* w _j
Right-Arc(l)	
<[, w _i], [], [w _j ,], A>	$ eg \exists k \exists l' (w_k, l', w_j) \in A$
$\langle [], [w_i,], [w_j,], A \cup \{(w_i, I, w_j)\} \rangle$	$\neg W_i \rightarrow^* W_j$

Transitions

- No-Arc
 - $\frac{\langle [..., w_i], [...], [...], A \rangle}{\langle [...], [w_i, ...], [...], A \rangle}$
- -----
- Shift
 - $([...]_{L1}, [...]_{L2}, [w_i, ...], A)$
 - $\label{eq:constraint} \langle [\ldots]_{L1} \, \bullet \, [\ldots , \, w_i]_{L2}, \, [], \, [\ldots], \, A \rangle$
- L₁ L₂ = the concatenation of L₁ and L₂

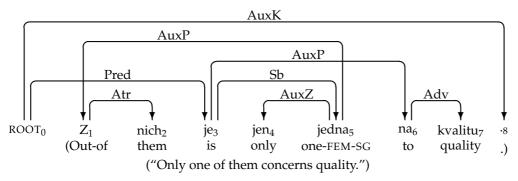


Figure 1

Dependency graph for a Czech sentence from the Prague Dependency Treebank.

An Example

$\begin{array}{c} \text{SHIFT}^{\lambda} \Longrightarrow \\ \text{RIGHT-ARC}^{n}_{\text{Atr}} \Longrightarrow \\ \text{SHIFT}^{\lambda} \Longrightarrow \\ \text{NO-ARC}^{n} \Longrightarrow \\ \text{NO-ARC}^{n} \Longrightarrow \end{array}$	([0, 1], ([0], ([0, 1, 2], ([0, 1], ([0],	[2], [1,2],	$[1, \dots, 8], \emptyset \qquad)$ $[2, \dots, 8], \emptyset \qquad)$ $[2, \dots, 8], A_1 = \{(1, Atr, 2)\} \qquad)$ $[3, \dots, 8], A_1 \qquad)$
$\begin{array}{c} \text{Right-Arc}_{\text{Pred}}^{n} \Longrightarrow \\ \text{SHIFT}^{\lambda} \Longrightarrow \end{array}$	([0,,3],	[],	$[3, \dots, 8], A_2 = A_1 \cup \{(0, \operatorname{Pred}, 3)\})$ [4, \dots, 8], A_2)
			$[5, \dots, 8], A_2$)
$\begin{array}{c} \text{LEFT-ARC}^n_{\text{AuxZ}} \Longrightarrow \\ \text{RIGHT-ARC}^n_{\text{Sb}} \Longrightarrow \end{array}$			$[5, \dots, 8], A_3 = A_2 \cup \{(5, \text{AuxZ}, 4)\})$ $[5, \dots, 8], A_4 = A_3 \cup \{(3, \text{Sb}, 5)\}$
NO-ARC ^{<i>n</i>} \Longrightarrow			$[5, \ldots, 8], A_4$)
			$[5,\ldots,8], A_5 = A_4 \cup \{(5, \operatorname{AuxP},1)\}$)
$\text{SHIFT}^{\lambda} \Longrightarrow$	•		$[6,7,8], A_5$)
$NO-ARC^n \Longrightarrow$	$([0, \ldots, 4],$	[5],	$[6,7,8], A_5$)

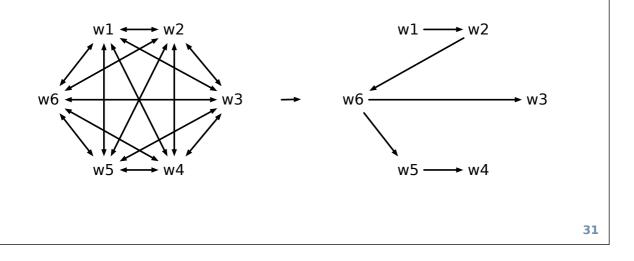
29

Non-projective Parsing

- The algorithm is sound and complete for the class of dependency forests
- Time complexity is O(n²)
 - at most n Shift-transitions
 - between the i-th and (i+1)-th Shift-transition there are at most i transitions (left-arc, right-arc, no-arc)

Graph-based Parsing

- Basic idea:
 - consider the complete graph where the nodes are the words from the input and edges are annotated with scores
 - Parsing = compute the maximum spanning tree



Literature

- Sandra K
 übler, Ryan McDonald and Joakim Nivre (2009). Dependency Parsing.
- Joakim Nivre (2008). Algorithms for Deterministic Incremental Dependency Parsing. Computational Linguistics 34(4), 513–553.