
Computational Linguistics
Probabilistic Parsing

Dietrich Klakow & Stefan Thater
FR 4.7 Allgemeine Linguistik (Computerlinguistik)
Universität des Saarlandes

Summer 2012

Salespeople sold the dog biscuits

2

! S!→ NP VP! NP!→ NP NP
!VP!→ V NP! NP!→ N
!VP!→ V NP NP! DET!→ the
NP!→ DET N! N!→ dog!
NP!→ DET N N! !…

(Charniak, 1997)

S

NP VP

V

DET N N

NPN

Salespeople sold

the dog biscuits

S

NP VP

V

DET N N

NPN

Salespeople sold

the dog biscuits

NP

S

NP VP

V

DET N N

NP

N

Salespeople sold

the dog biscuits

NP

NP

Ambiguity & Disambiguation

3

■ Probabilistic disambiguation
choose the one that is most derivation tree if the input
sentence is ambiguous (has > 1 derivation trees)

■ We need …
■ a probabilistic model of (contex-free) grammar
■ methods to estimate probabilities

Further Motivation

4

■ Natural language is ambiguous
⇒ disambiguation

■ Grammar development
⇒ automatically induce grammars

■ Efficient search
⇒ compute the most likely parse tree first

■ Robustness

Probabilistic Context-Free
Grammars (PCFG)

■ Probabilistic context-free grammar (PCFG)
■ a context-free grammar ⟨V, Σ, R, S⟩
■ a funktion P assigning a value p ∈ [0, 1] to each rule

■ such that ∑β ∈ V* P(A → β) = 1

■ P(A → β) = the conditional probability that symbol A is
expanded to β
■ Alternative notations: P(β | A), P(A → β | A), A → β [p]

5

Derivation Trees (Recap)

■ Derivarion trees:
■ The root node is labeled with the start symbol S
■ Leaf nodes are labeled with terminal symbols or ε
■ An inner node and their child nodes correspond to the rules

that have been used in the derivation

■ Parsing:
Compute all derivation trees for a given input

■ Probabilistic parsing:
Compute the most likely derivation tree

6

Probabilistic Context-Free
Grammar (PCFG)

■ A PCFG assigns a probability to each derivation tree of a
sentence.

■ The probability of a derivation tree T is defined as
the product of the probabilities of all the rules that have
been used to expand the nodes in T:
■ P(T, w) = P(T) = ∏n∈T P(R(n))
■ R(n) is the rule that has been used to expand node n
■ Note: P(T, w) = P(T) P(w | T) = P(T), because P(w | T) = 1

■ The probability of a sentence w is the sum of the
probabilities of all its derivation trees:
■ P(w) = ΣT P(w, T), for w ∈ L(G)

7

Salespeople sold the dog biscuits

! S!→ NP VP! [1.0]
! VP!→ V NP! [0.8]
! VP!→ V NP NP! [0.2]
! NP!→ DET N! [0.5]
! NP!→ N! [0.3]
! NP!→ DET N N! [0.15]
! NP!→ NP NP! [0.05]
DET!→ the! [1.0]

N!→ Salespeople! [0.55]
N!→ dog! [0.25]
N!→ biscuits! [0.2]
!V!→ sold! [1.0]

(Charniak, 1997)

8

S

NP VP

V

DET N N

NPN

Salespeople sold

the dog biscuits

1.0

0.3 0.8

1.0 0.15

1.0 0.25 0.2

0.55

P(t) =!1.0 ⨉ 0.3 ⨉ 0.55 ⨉
0.8 ⨉ 1.0 ⨉ 0.15 ⨉
1.0 ⨉ 0.25 ⨉ 0.2

! =!9.9 ⨉ 10-4

Salespeople sold the dog biscuits

! S!→ NP VP! [1.0]
! VP!→ V NP! [0.8]
! VP!→ V NP NP! [0.2]
! NP!→ DET N! [0.5]
! NP!→ N! [0.3]
! NP!→ DET N N! [0.15]
! NP!→ NP NP! [0.05]
DET!→ the! [1.0]

N!→ Salespeople! [0.55]
N!→ dog! [0.25]
N!→ biscuits! [0.2]
!V!→ sold! [1.0]

(Charniak, 1997)

9

S

NP VP

V

DET N N

NPN

Salespeople sold

the dog biscuits

NP

1.0

0.3 0.2

0.55 1.0 0.5 0.3

1.0 0.25 0.2

P(t) =!1.0 ⨉ 0.3 ⨉ 0.55 ⨉
0.2 ⨉ 1.0 ⨉ 0.5 ⨉
1.0 ⨉ 0.25 ⨉ 0.3 ⨉ 0.2

! =!2.475 ⨉ 10-4

Salespeople sold the dog biscuits

! S!→ NP VP! [1.0]
! VP!→ V NP! [0.8]
! VP!→ V NP NP! [0.2]
! NP!→ DET N! [0.5]
! NP!→ N! [0.3]
! NP!→ DET N N! [0.15]
! NP!→ NP NP! [0.05]
DET!→ the! [1.0]

N!→ Salespeople! [0.55]
N!→ dog! [0.25]
N!→ biscuits! [0.2]
!V!→ sold! [1.0]

(Charniak, 1997)

10

S

NP VP

V

DET N N

NP

N

Salespeople sold

the dog biscuits

NP

NP

1.0 0.25 0.2

0.55 1.0 0.05

1.0

0.3

0.3

0.8

0.5

P(t) =!1.0 ⨉ 0.3 ⨉ 0.55 ⨉ 0.8 ⨉
1.0 ⨉ 0.05 ⨉ 0.5 ⨉ 1.0 ⨉
0.25 ⨉ 0.3 ⨉ 0.2

! =!4.95 ⨉ 10-5

Probabilistic Context-Free
Grammar (PCFG)

■ The probability of a sentence w is the sum of the
probabilities of all its derivation trees:
■ P(w) = ΣT P(w, T), for w ∈ L(G)

■ A PCFG G is consistent if Σw∈L(G) P(w) = 1

■ Recursion can lead to inconsistent grammars:
■ S → S S! [0.6]
■ S → a! [0.4]

11

An inconsistent PCFG

■ S → S S! [0.6] / [0.4]

■ S → a! [0.4] / [0.6]

■ P(ai) = #trees(ai) ⨉ 0.6i-1 ⨉ 0.4i = 0.4
■ P(a) = 0.4, P(aa) = 0.096, P(aaa) = 0.0461, …

■ P(ai) = #trees(ai) ⨉ 0.4i-1 ⨉ 0.6i = 0.4
■ P(a) = 0.6, P(aa) = 0.144, P(aaa) = 0.06912, …

■ Number of trees (#trees) for ai+1 = i-th Catalan number

12

An inconsistent PCFG

13

0

0.25

0.50

0.75

1.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S → S S! [0.6] / [0.4]
S → a! [0.4] / [0.6]

input length

Probabilistic Parsing

14

■ Language modelling (“inside probabilities”)
compute the probability that S ⇒* w for an input
sentence w:
■ P(w) = ΣT P(w, T)

■ Probabilistic parsing (“viterbi scores”)
compute the most likely derivation tree T(w) for an input
sentence w:
■ T(w)!= arg maxT P(T | w)

! = arg maxT

! = arg maxT P(T)

P(T, w)
P(w)

Properties of PCFGs

■ The probability of a (sub) tree is indipendant of
■ the context in which the tree occurs
■ the node(s) that dominates the tree

15

Probabilistic CYK Parsing

16

■ Extend the CYK algorithm:
■ T[i, j, A] = the probability that A ⇒* wi+1 … wj

■ Inside probabilities:
■ T[i, j, A] = sum of the probabilities of all derivation trees of

the substring wi+1 … wj

■ Probability of a derivation tree (parsing)
■ T[i, j, A] = the probability of the most likely derivation
■ B[i, j, A] = the corresponding derivation tree

CYK (without probabilities)

function CYK(G, w1 ... wn):
 for i in 1 ... n do
 T[i-1, i] = { A | A → wi ∈ R }
 for j in i - 2 ... 0 do
 T[j, i] = ∅
 for k in j + 1 ... i - 1 do
 T[j, i] = T[j, i] ∪
 { A | A → B C, B ∈ T[j,k], C ∈ T[k, i] }
 done
 done
 done
 if S ∈ T[0, n] then return True else return False

17

CYK (with probabilities)

function CYK(G, w1 ... wn):
 ⟨initialize T and B⟩
 for i in 1 ... n do
 for all nonterminals A in G do
 T[i-1, i, A] = P(A → wi)
 for j in i - 2 ... 0 do
 for k in j + 1 ... i - 1 do
 for all A → B C do
 pr = T[j, k, B] ⨉ T[k, i, C] ⨉ P(A → B C)

 if pr > T[j, i, A] then
 T[j, i, A] = pr
 B[j, i, A] = ⟨construct subtree⟩
 return ⟨B[0, n, S] and T[0, n, S]⟩

18

Learning PCFG Probabilities

■ Option #1
count frequencies of rules in syntactically annotated
treebanks (such as the Penn Treebank)

■ Option #2
Inside-outside algorithm (not discussed here)

19

Learning PCFG Probabilities

■ We are given a syntactically annotated corpus
■ annotated corpus = a set of derivation trees

■ We can construct a grammar from the treebank by
identifying the rules with all “subtrees” of height 1

■ Estimating rule probabilities:

■ P(A → α) =

■ count(A → α) = the number of times the rule A → α has
been used in all trees in the corpus

20

count(A → α)

Σβ count(A → β)

Learning PCFG Probabilities

■ A very small treebank:
■ S1: [S [NP grass] [VP grows]]
■ S2: [S [NP grass] [VP grows] [AP fast]]
■ S3: [S [NP grass] [VP grows] [AP slowly]]
■ S4: [S [NP bananas] [VP grow]]

■ Rules & rule probabilities:
■ S → NP VP! 2/4
■ S → NP VP AP! 2/4
■ NP → grass! 3/4
■ …

21

(Example: Webber/Keller)

Learning PCFG Probabilities

22

RuleRule P(A → α)

r1 ! S!→ NP VP 2/4

r2 ! S!→ NP VP AP 2/4

r3 !NP!→ grass 3/4

r4 !NP!→ bananas 1/4

r5 !VP!→ grows 3/4

r6 !VP!→ grow 1/4

r7 !AP!→ fast 1/2

r8 !AP!→ slowly 1/2

Learning PCFG Probabilities

■ Probabilities of the sentences:
■ P(S1) = P(r1) ⨉ P(r3) ⨉ P(r5) = 2/4 ⨉ 3/4 ⨉ 3/4 = 0.28125
■ P(S2) = P(r2) ⨉ P(r3) ⨉ P(r5) ⨉ P(r7) = 0.140625

■ P(S3) = P(r2) ⨉ P(r3) ⨉ P(r5) ⨉ P(r7) = 0.140625
■ P(S4) = P(r1) ⨉ P(r4) ⨉ P(r6) = 0.03125

23

Evaluation

■ Coverage: How many sentences are well-formed
according to the grammar?

■ Accuracy: How many sentences are correctly parsed?
■ measured as “relative correctness” wrt. to category label,

start and end position (yield) of all constituents (subtrees)
■ Labelled precision: percentage of correct subtrees in the

parser output
■ Labelled recall: percentage of correct subtrees in the

gold standard (test corpus)

24

Evaluation

■ Labelled Precision = C / M

■ Labelled Recall = C / N

■ where
■ C = number of correct constituents produced by the parser
■ M = total number of constituents produced by the parser
■ N = total number of constituents in reference corpus

25

Binarization

26

■ Replace rules of the form A → A1 A2 A3 … Ak [p] by
■ A → ⟨A1,…,Ak-1⟩ Ak! ! ! [p]
■ ⟨A1,…,Ak-1⟩ → A1 … Ak-1! [1.0]

■ … or binarize trees in the treebank before “reading off”
the grammar from the trees.

Problems

■ The probability of a (sub) tree is indipendant of
■ the context in which the tree occurs
■ the node(s) that dominates the tree

■ Problems: we want to capture …
■ Lexical dependencies
■ Structural dependencies

27

T

Lexical Dependencies

■ The two trees differ only in one rule:
■ VP → VP PP
■ NP → NP PP

28

S

NP VP

V

NP PP

NP

dumped

sacks
NPP

into
a bin

workers

S

NP

VP

V NP

PP

dumped
sacks

NPP

into
a bin

workers

VP

Lexical Dependencies

■ The two trees differ only in one rule:
■ VP → VP PP
■ NP → NP PP

■ ⇒ the grammar will either
■ always prefer the 1st rule (VP attachment) or
■ always prefer the 2nd rule (NP-attachment)

■ But …
■ Workers dumped sacks into a bin
■ Fishermen caught tons of herring

■ ⇒ Lexikalized PCFG

29

Lexical Dependencies

30

come take think want

 VP → V 9.5% 2.6% 4.6% 5.7%

 VP → V NP 1.1% 32.1% 0.2% 13.9%

 VP → V PP 35.5% 3.1% 7.1% 0.3%

 VP → V SBAR 6.6% 0.3% 73.0% 0.2%

 VP → V S 2.2% 1.3% 4.8% 70.8%

 VP → V NP S 0.1% 5.7% 0.0% 0.3%

 VP → V PRT NP 0.3% 5.8% 0.0% 0.0%

 VP → V PRT PP 6.1% 1.5% 0.2% 0.0%

 … … … … …

(Manning & Schütze)

Structural dependencies

■ Structural independencies:
■ The (probability of an) application of a rule is independent

of all other rules in the derivation tree
■ NP → Pronoun vs. NP → Det Noun

same probabilities for all occurrences of NP

■ But … (Francis &al, 1999)
■ Subject-NP: 91% pronouns, 9% non-pronouns
■ Object-NP: 34% pronouns, 66% non-pronouns
■ (Switchboard corpus, spoken language)

■ ⇒ Parent annotation

31

Structural dependencies

■ Some dependencies can be “built into” the category
symbols.

32

S

NP

VBD

need

NP

NNDT

a flight

I

VP

PRP

S

NP-SBJ

VBD

need

NP

NNDT

a flight

I

VP

PRP

S!ROOT

NP!S

VBD

need

NP!VP

NNDT

a flight

I

VP!S

PRP

Structural dependencies

■ Parent Annotation: nodes are annotated with the
label of their parent nodes

■ Similar effect compared to
conditional probabilities
■ P(NP∧S → PRP)
■ P(NP → PRP | S)

■ Compare:
■ P(NP-SBJ → PRP) – no correspondence to conditional

probabilities

33

S!ROOT

NP!S

VBD

need

NP!VP

NNDT

a flight

I

VP!S

PRP

Structural dependencies

■ Parent annotation can also be useful for preterminal
nodes

■ Most frequent adverbs with parent …
■ ADVP – also, now
■ VP – not, n’t
■ NP – only, just

■ Penn Treebank – no distinction (same POS) between
■ subordinating conjunctions (while, as, if),
■ complementizers (that, for)
■ prepositions (of, in, from)

34

Structural dependencies

■ Parent annotation can also be useful for preterminal
nodes

35

VP!S

TO

VBD

see

PP!VP

NP!PPIN

if NN

VP!VP

to

NNS

advertising works

VP!S

TO!VP

VBD!VP

see

SBAR!VP

S!SBARIN!SBAR

if NP!S

VP!VP

to

VP!S

NN!NP VBZ!VP

advertising works

Structural dependencies

■ Parent annotation – drawbacks
■ the grammar gets larger
■ fewer training data for each rule
■ reduced generalization (“overfitting”)

36

Lexical dependencies

■ The head of a constituent is the “central” word of a
phrase
■ Noun – NP
■ Verb – VP, S
■ Adjektive – AP
■ Preposition – PP

37

Lexical dependencies

■ Lexicalized parsing: annotate nodes with their lexical
heads

38

Sdumped

NPworkers VPdumped

Vdumped

NPsacks PPinto

NPsacks

dumped

sacks

NPbinPinto

into

a

workers

NNSworkers

NNSsacks

DETa NNbin

bin

Lexical dependencies

39

RuleRule P(A → α)

r1 ! Sdumpled!→ NPworkers VPdumped 1/1

r2 ! NPworkers!→ NNSworkers 1/1

r3 ! NPsacks!→ NNSsacks 1/2

r4 ! NPsacks!→ NPsacks PPinto 1/2

r5 ! NPbin!→ DTa NNbin 1/1

… ! !… …

Lexical dependencies

■ Problems:
■ this leads to much larger grammars
■ its hard to estimate the rule probabilities

40

Lexicalized parsing

■ Complexity (CYK)
■ Runtime: O(|rules|n3),
■ Wost case: |rules| = |nonterminals|3

■ Lexicalized grammars
■ Worst case: |rules| = |nonterminals|3 · |terminals|2

■ |terminals| usually much larger than |nonterminals|
■ ⇒ O(n5) runtime for typical grammars and input sentences

41

Literature

42

■ Jurafsky & Martin (2009) Speech and Language
Processing Kapitel 14.

■ Manning & Schütze (1999). Foundations of Statistical
Natural Language Processing. Kapitel 11 & 12.

■ Eugene Charniak (1993). Statistical Language Learning.
Kapitel 5.

