Computational Linguistics
Probabilistic Parsing

Dietrich Klakow & Stefan Thater
FR 4.7 Allgemeine Linguistik (Computerlinguistik)
Universitat des Saarlandes

Summer 2012

(Charniak, 1997)

Salespeople sold the dog biscuits

5 S

/\ /\

NP vP NP VP

N Y; NP N v Wp

| |

Salespeople sold DET N N Salespeople soid NP NP

IR Zo0N
the dog biscuits DET N N

I I I
the dog biscuits

S
/\
NP VP S - NP VP NP — NP NP
/I\
N \Y NP NP VP -» V NP NP - N
I I N I
Salespeople sold DET N N VP - VNP NP DET - the

| | |
the dog biscuits NP - DET N N - dog

NP - DET NN

Ambiguity & Disambiguation

m Probabilistic disambiguation
choose the one that is most derivation tree if the input
sentence is ambiguous (has > 1 derivation trees)

m We need ...

® a probabilistic model of (contex-free) grammar

® methods to estimate probabilities

Further Motivation

m Natural language is ambiguous
= disambiguation

B Grammar development
= automatically induce grammars

m Efficient search
= compute the most likely parse tree first

m Robustness

Probabilistic Context-Free

Grammars (PCFQG)

® Probabilistic context-free grammar (PCFG)
® a3 context-free grammar (V, Z, R, S)
® a funktion P assigning a value p € [0, 1] to each rule
® suchthat3pev«P(A->B)=1
m P(A - B) = the conditional probability that symbol A is
expanded to B
m Alternative notations: P(B | A), P(A- B | A), A- B [p]

Derivation Trees (Recap)

m Derivarion trees:
® The root node is labeled with the start symbol S
®m Leaf nodes are labeled with terminal symbols or €

® An inner node and their child nodes correspond to the rules
that have been used in the derivation

m Parsing:
Compute all derivation trees for a given input

m Probabilistic parsing:
Compute the most likely derivation tree

Probabilistic Context-Free

Grammar (PCFQG)

m A PCFG assigns a probability to each derivation tree of a
sentence.

® The probability of a derivation tree T is defined as
the product of the probabilities of all the rules that have
been used to expand the nodes in T:

= P(T, w) = P(T) = [ner P(R(n))

® R(n) is the rule that has been used to expand node n

= Note: P(T, w) = P(T) P(w | T) = P(T), because P(w | T) = 1
® The probability of a sentence w is the sum of the

probabilities of all its derivation trees:

® P(w) = 27 P(w, T), forw € L(G)

(Charniak, 1997)

Salespeople sold the dog biscuits

S - NP VP [1.0] e
VP - V NP [0.8] N|P0,3 VPo s
VP = VNP NP [0.2] No.s5 Vio NPo.15
NP - DET N [0.5]
NP = N [0.3] Salespeople sold DET, yNg,5 N,
NP - DET NN [0.15] the dog biscuits
NP — NP NP [0.05]
DET - the [1.0]
N - Salespeople [0.55] P(t) =1.0 x 0.3 x 0.55 x
N - dog [0.25] 0.8 x 1.0 x 0.15 x
N - biscuits [0.2] 1.0 x 0.25 x 0.2
V - sold [1.0] — 9.9 x 104
| — —

(Charniak, 1997)

Salespeople sold the dog biscuits

S — NP VP [1.0] 210
VP - V NP [0.8] NIPo.s VPo.>
VP> VNP NP 10.2] Noss Vio NPos NPos
NP - DET N [0.5] I
NP - N [0.3] Salespeople sold D||5T1.o|}|o.25 I}Io_z
NP - DETNN [0.15] the dog biscuits
NP —» NP NP [0.05]

DET - the [1.0]

N — Salespeople [0.55] P(t) =1.0 x 0.3 x 0.55 x

N - dog [0.25] 0.2 x1.0x0.5x

N — biscuits [0.2] 1.0 x 0.25 x 0.3 x 0.2

V - sold [1.0] — 2475 x 104

| — —

(Charniak, 1997)

Salespeople sold the dog biscuits

S - NP VP [1.0] /Sk
VP - V NP [0.8] NIP0.3 VPos
—
VP - V NP NP [0.2]
NP —» DET N [0.5] To'ss \I/I'0 /NPO'Q
NP - N [0.3] Salespeople sold /NQS NIPO_3
NP - DET N N [0.15] DET; o Ng2s Noo
NP — NP NP [0.05] tr!e chJg biscluits
DET - the [1.0]
N - Salespeople [0.55] P(t) =1.0 x 0.3 x 0.55 x 0.8 x
N - dog [0.25] 1.0 x 0.05 x 0.5 x 1.0 x
N - biscuits [0.2] 0.25x 0.3x0.2
V - sold [1.0] = 4.95 x 105
| — ———
10

Probabilistic Context-Free

Grammar (PCFQG)

m The probability of a sentence w is the sum of the
probabilities of all its derivation trees:

® P(w) =27 P(w, T), forw € L(G)
m A PCFG G is consistent if ZweL) P(w) =1

m Recursion can lead to inconsistent grammars:
= S-SS [0.6]
= S->a [04]

11

An inconsistent PCFG

m S->SS [0.6]/[0.4]
m S->a [0.4]/[0.6]

m P(al) = #trees(a’) x 0.6"1 x 0.4 = 0.4

®= P(a) = 0.4, P(aa) = 0.096, P(aaa) = 0.0461, ...
m P(al) = #trees(a') x 0.4'1 x 0.6' = 0.4

= P(a) = 0.6, P(aa) = 0.144, P(aaa) = 0.06912, ...

m Number of trees (#trees) for ai*! = j-th Catalan number

12

An inconsistent PCFG

1.00

0.75

0.50
/ S >SS [0.6]/[0.4]
1 2 3 4 5

S-a [0.4]/][0.6]
0.25

input length

6 7 8 9 10 11 12 13 14 15

13

Probabilistic Parsing

® Language modelling (“inside probabilities”)
compute the probability that S =* w for an input
sentence w:

" P(w)=2TP(w,T)

® Probabilistic parsing (“viterbi scores”)
compute the most likely derivation tree T(w) for an input
sentence w:

® T(w) = arg maxt P(T | w)
P(T, w)

P(w)
= arg maxt P(T)

= arg maxr

14

Properties of PCFGs

m The probability of a (sub) tree is indipendant of
® the context in which the tree occurs

® the node(s) that dominates the tree

15

Probabilistic CYK Parsing

m Extend the CYK algorithm:
= TI[i, j, A] = the probability that A =* wi+1 ... w;

m Inside probabilities:
= TI[i, j, A] = sum of the probabilities of all derivation trees of
the substring wi+1 ... w;j
m Probability of a derivation tree (parsing)
= TTi, j, A] = the probability of the most likely derivation

= BJi, j, A] = the corresponding derivation tree

16

CYK (without probabilities)

function CYK(G, wi ... wn):
for i in 1 ... n do
T[i-1, i] ={ A | A > wi €ER }
for j ini - 2 ... 0 do
T[j, i] = @
for kin j +1 ... 1 - 1do

T(j, 1] = T[j, 1] v
{A| A-BC, B€T[j,k], C€T[k, i] }
done
done
done
if S € T[0, n] then return True else return False

17

CYK (with probabilities)

function CYK(G, w1 ... Wn):
(initialize T and B)
for i in 1 ... n do
for all nonterminals A in G do
T[i-1, i, A] = P(A - wi)
for j ini - 2 ... 0 do
for kin j+1 ... 1 - 1do
for all A - B C do
pr = T[j, k, Bl x T[k, i, C] x P(A - B (C)
if pr > T[j, i, A] then
T[j, i, Al pr
Bl[j, i, A] (construct subtree)
return (B[O, n, S] and T[0O, n, S])

18

Learning PCFG Probabilities

m Option #1
count frequencies of rules in syntactically annotated
treebanks (such as the Penn Treebank)

m Option #2
Inside-outside algorithm (not discussed here)

19

Learning PCFG Probabilities

m We are given a syntactically annotated corpus

® annotated corpus = a set of derivation trees

m We can construct a grammar from the treebank by
identifying the rules with all “subtrees” of height 1

m Estimating rule probabilities:
count(A - a)
ZB count(A - B)

= PA-a) =

® count(A - a) = the number of times the rule A - a has
been used in all trees in the corpus

20

(Example: Webber/Keller)

Learning PCFG Probabilities

® A very small treebank:
= S;: [s [ne grass] [ve grows]]
® Sy: [s[ne grass] [ve grows] [ap fast]]
= Ss: [s [ne grass] [ve grows] [ap slowly]]
® Su: [s [ne bananas] [ve grow]]
m Rules & rule probabilities:
= S NPVP 2/4
= S>NPVPAP 2/4
® NP - grass 3/4

21

Learning PCFG Probabilities

Rule P(A - a)
rr S—-NPVP 2/4
rr S - NPVPAP 2/4
rs NP - grass 3/4
ra NP - bananas 1/4
rs VP — grows 3/4
re VP - grow 1/4
r; AP - fast 1/2
re AP - slowly 1/2
22

Learning PCFG Probabilities

m Probabilities of the sentences:
® P(S1) = P(r1) x P(r3) x P(rs) = 2/4 x 3/4 x 3/4 = 0.28125
B P(S2) = P(r2) x P(r3) x P(rs) x P(r7) = 0.140625
m P(S3) = P(r2) x P(r3) x P(rs) x P(r7) = 0.140625
B P(Ss) = P(r1) x P(ra) x P(re) = 0.03125

23

Evaluation

m Coverage: How many sentences are well-formed
according to the grammar?

m Accuracy: How many sentences are correctly parsed?

® measured as “relative correctness” wrt. to category label,
start and end position (yield) of all constituents (subtrees)

® Labelled precision: percentage of correct subtrees in the
parser output

® Labelled recall: percentage of correct subtrees in the
gold standard (test corpus)

24

Evaluation

m Labelled Precision=C/ M
m Labelled Recall =C/N

m where
® C = number of correct constituents produced by the parser
® M = total number of constituents produced by the parser

® N = total number of constituents in reference corpus

25

Binarization

m Replace rules of the form A = A1 A2 As ... Ac [p] by
® A- (A,...,Ac1) Ac [p]
® (A1,...,Ac1) 2 A1 ... Aka [1.0]

® ... or binarize trees in the treebank before “reading off”
the grammar from the trees.

26

Problems

m The probability of a (sub) tree is indipendant of

m the context in which the tree occurs

® the node(s) that dominates the tree

® Problems: we want to capture ...

® |Lexical dependencies

® Structural dependencies

27

Lexical Dependencies

m The two trees differ only in one rule:

= VP - VPPP
S
® NP - NP PP —
NP VP
/\
YAN VP PP
workers _—"~_ —
S \|/ NP II3 NP
— dumped A into A
NP VP sacks a bin
/\
VAN v NP
workers I — —
dumped NP PP

/\
- P NP
sacks |
into A

a bin

28

Lexical Dependencies

m The two trees differ only in one rule:
= VP - VP PP
= NP - NP PP

® = the grammar will either
® always prefer the 1st rule (VP attachment) or

® always prefer the 2nd rule (NP-attachment)

m But...
® Workers dumped sacks into a bin

® Fishermen caught tons of herring
m = Lexikalized PCFG

29

(Manning & Schutze)

Lexical Dependencies

come take think want
VP -V 9.5% 2.6% 4.6% 5.7%
VP - V NP 1.1% 32.1% 0.2% 13.9%
VP -V PP 35.5% 3.1% 7.1% 0.3%
VP - V SBAR 6.6% 0.3% 73.0% 0.2%
VP ->VS 2.2% 1.3% 4.8% 70.8%
VP ->VNPS 0.1% 5.7% 0.0% 0.3%
VP - V PRT NP 0.3% 5.8% 0.0% 0.0%
VP - V PRT PP 6.1% 1.5% 0.2% 0.0%

30

Structural dependencies

m Structural independencies:

® The (probability of an) application of a rule is independent

of all other rules in the derivation tree

® NP - Pronoun vs. NP - Det Noun
same probabilities for all occurrences of NP

m But ... (Francis &al, 1999)
® Subject-NP: 91% pronouns, 9% non-pronouns
® Object-NP: 34% pronouns, 66% non-pronouns

® (Switchboard corpus, spoken language)

®m = Parent annotation

31

Structural dependencies

® Some dependencies can be “built into” the category

symbols.
S S SAROOT

/‘\ /‘\

NP VP NP-SB) VP NPAS VPAS
PRP VBD NP PRP VBD NP PRP VBD NPAVP

| I PN | I PN | I PN

| need DIT NIN | need DIT NIN I need DIT NIN

a flight a flight a flight

32

Structural dependencies

m Parent Annotation: nodes are annotated with the
label of their parent nodes

m Similar effect compared to NP’?S“/Rcm\VZAS
conditional probabilities I ves
= P(NP?S - PRP) PRP VI?D NPAVP
= P(NP - PRP|S) I need DIT NIN
a flight

m Compare:

® P(NP-SBJ - PRP) - no correspondence to conditional
probabilities

33

Structural dependencies

m Parent annotation can also be useful for preterminal
nodes

m Most frequent adverbs with parent ...
® ADVP - also, now
® VP -not, n’t
® NP - only, just

m Penn Treebank - no distinction (same POS) between
® subordinating conjunctions (while, as, if),
® complementizers (that, for)

® prepositions (of, in, from)

34

Structural dependencies

m Parent annotation can also be useful for preterminal

nodes
VPAS VPAS
/\ /\
TO VPAVP TOAVP VPAVP
[— T~ [—_—
to VBD PPAVP to VBD*VP SBARAVP
see IN NPAPP see INASBAR SASBAR
if NIN NI}IS if NPI"S VPI"S
advertising works NN*NP VBZ"VP

advertising works

35

Structural dependencies

m Parent annotation - drawbacks
® the grammar gets larger
m fewer training data for each rule

® reduced generalization (“overfitting”)

36

Lexical dependencies

m The head of a constituent is the “central” word of a

phrase
® Noun - NP
®m Verb-VP, S

= Adjektive - AP

® Preposition - PP

37

Lexical dependencies

m Lexicalized parsing: annotate nodes with their lexical

heads
Sdumped
NPworkers VPdumped
NNSwlorkers Vdumped NPsacks
/\
workers dumped NPsacks PPinto

l /\
NNslsacks Pir|1to NIDbin

. /\
sacks into DETas NNbpin

I
a bin

38

Lexical dependencies

Rule P(A - a)
ri Sdumpled = NPworkers VPdumped 1/1
r2 NPworkers & NNSworkers 1/1
rs NPsacks = NNSsacks 1/2
ra NPsacks = NPsacks PPinto 1/2
rs NPpin = DTa NNbin 1/1

39

Lexical dependencies

® Problems:
® this leads to much larger grammars

® jts hard to estimate the rule probabilities

40

Lexicalized parsing

m Complexity (CYK)
= Runtime: O(Jrules|n3),

m Wost case: |rules| = |nonterminals|3

m Lexicalized grammars
® Worst case: |rules| = |nonterminals|? - [terminals|?
® |terminals| usually much larger than |nonterminals|

® = O(n?) runtime for typical grammars and input sentences

41

Literature

m Jurafsky & Martin (2009) Speech and Language
Processing Kapitel 14.

® Manning & Schutze (1999). Foundations of Statistical
Natural Language Processing. Kapitel 11 & 12.

® Eugene Charniak (1993). Statistical Language Learning.
Kapitel 5.

42

