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Salespeople sold the dog biscuits
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! S!→ NP VP! NP!→ NP NP
!VP!→ V NP! NP!→ N
!VP!→ V NP NP! DET!→ the 
NP!→ DET N! N!→ dog!
NP!→ DET N N! !…

(Charniak, 1997)

S

NP VP

V

DET N N

NPN

Salespeople sold

the dog biscuits

S

NP VP

V

DET N N

NPN

Salespeople sold

the dog biscuits

NP

S

NP VP

V

DET N N

NP

N

Salespeople sold

the dog biscuits

NP

NP



Ambiguity & Disambiguation
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■ Probabilistic disambiguation
choose the one that is most derivation tree if the input 
sentence is ambiguous (has > 1 derivation trees)

■ We need …
■ a probabilistic model of (contex-free) grammar
■ methods to estimate probabilities

Further Motivation
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■ Natural language is ambiguous
⇒ disambiguation

■ Grammar development
⇒ automatically induce grammars

■ Efficient search
⇒ compute the most likely parse tree first

■ Robustness



Probabilistic Context-Free 
Grammars (PCFG)

■ Probabilistic context-free grammar (PCFG) 
■ a context-free grammar ⟨V, Σ, R, S⟩ 
■ a funktion P assigning a value p ∈ [0, 1] to each rule

■ such that ∑β ∈ V* P(A → β) = 1

■ P(A → β) = the conditional probability that symbol A is 
expanded to β
■ Alternative notations: P(β | A), P(A → β | A), A → β [p] 
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Derivation Trees (Recap)

■ Derivarion trees:
■ The root node is labeled with the start symbol S
■ Leaf nodes are labeled with terminal symbols or ε
■ An inner node and their child nodes correspond to the rules 

that have been used in the derivation

■ Parsing:
Compute all derivation trees for a given input

■ Probabilistic parsing:
Compute the most likely derivation tree
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Probabilistic Context-Free 
Grammar (PCFG)

■ A PCFG assigns a probability to each derivation tree of a 
sentence.

■ The probability of a derivation tree T is defined as 
the product of the probabilities of all the rules that have 
been used to expand the nodes in T:
■ P(T, w) = P(T) = ∏n∈T P(R(n))
■ R(n) is the rule that has been used to expand node n
■ Note: P(T, w) = P(T) P(w | T) = P(T), because P(w | T) = 1

■ The probability of a sentence w is the sum of the 
probabilities of all its derivation trees:
■ P(w) = ΣT P(w, T), for w ∈ L(G) 
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Salespeople sold the dog biscuits

! S!→ NP VP! [1.0]
! VP!→ V NP! [0.8]
! VP!→ V NP NP! [0.2]
! NP!→ DET N! [0.5]
! NP!→ N! [0.3]
! NP!→ DET N N! [0.15]
! NP!→ NP NP! [0.05]
DET!→ the! [1.0]

N!→ Salespeople! [0.55]
N!→ dog! [0.25]
N!→ biscuits! [0.2]
!V!→ sold! [1.0]

(Charniak, 1997)
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P(t) =!1.0 ⨉ 0.3 ⨉ 0.55 ⨉ 
0.8 ⨉ 1.0 ⨉ 0.15 ⨉ 
1.0 ⨉ 0.25 ⨉ 0.2

! =!9.9 ⨉ 10-4



Salespeople sold the dog biscuits

! S!→ NP VP! [1.0]
! VP!→ V NP! [0.8]
! VP!→ V NP NP! [0.2]
! NP!→ DET N! [0.5]
! NP!→ N! [0.3]
! NP!→ DET N N! [0.15]
! NP!→ NP NP! [0.05]
DET!→ the! [1.0]

N!→ Salespeople! [0.55]
N!→ dog! [0.25]
N!→ biscuits! [0.2]
!V!→ sold! [1.0]

(Charniak, 1997)
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! =!2.475 ⨉ 10-4

Salespeople sold the dog biscuits

! S!→ NP VP! [1.0]
! VP!→ V NP! [0.8]
! VP!→ V NP NP! [0.2]
! NP!→ DET N! [0.5]
! NP!→ N! [0.3]
! NP!→ DET N N! [0.15]
! NP!→ NP NP! [0.05]
DET!→ the! [1.0]

N!→ Salespeople! [0.55]
N!→ dog! [0.25]
N!→ biscuits! [0.2]
!V!→ sold! [1.0]

(Charniak, 1997)
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Probabilistic Context-Free 
Grammar (PCFG)

■ The probability of a sentence w is the sum of the 
probabilities of all its derivation trees:
■ P(w) = ΣT P(w, T), for w ∈ L(G) 

■ A PCFG G is consistent if Σw∈L(G) P(w) = 1

■ Recursion can lead to inconsistent grammars:
■ S → S S! [0.6]
■ S → a! [0.4]

11

An inconsistent PCFG

■ S → S S! [0.6] / [0.4]

■ S → a! [0.4] / [0.6]

■ P(ai) = #trees(ai) ⨉ 0.6i-1 ⨉ 0.4i = 0.4
■ P(a) = 0.4, P(aa) = 0.096, P(aaa) = 0.0461, …

■ P(ai) = #trees(ai) ⨉ 0.4i-1 ⨉ 0.6i = 0.4
■ P(a) = 0.6, P(aa) = 0.144, P(aaa) = 0.06912, …

■ Number of trees (#trees) for ai+1 = i-th Catalan number
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An inconsistent PCFG
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Probabilistic Parsing

14

■ Language modelling (“inside probabilities”)
compute the probability that S ⇒* w for an input 
sentence w:
■ P(w) = ΣT P(w, T)

■ Probabilistic parsing (“viterbi scores”)
compute the most likely derivation tree T(w) for an input 
sentence w:
■ T(w)!= arg maxT P(T | w)

! = arg maxT 

! = arg maxT P(T)

P(T, w)
P(w)



Properties of PCFGs

■ The probability of a (sub) tree is indipendant of 
■ the context in which the tree occurs
■ the node(s) that dominates the tree
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Probabilistic CYK Parsing
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■ Extend the CYK algorithm:
■ T[i, j, A] = the probability that A ⇒* wi+1 … wj

■ Inside probabilities:
■ T[i, j, A] = sum of the probabilities of all derivation trees of 

the substring wi+1 … wj

■ Probability of a derivation tree (parsing)
■ T[i, j, A] = the probability of the most likely derivation
■ B[i, j, A] = the corresponding derivation tree



CYK (without probabilities)

function CYK(G, w1 ... wn):
   for i in 1 ... n do
      T[i-1, i] = { A | A → wi ∈ R }
      for j in i - 2 ... 0 do
         T[j, i] = ∅
         for k in j + 1 ... i - 1 do
            T[j, i] = T[j, i] ∪
               { A | A → B C, B ∈ T[j,k], C ∈ T[k, i] }
         done
      done
   done
   if S ∈ T[0, n] then return True else return False
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CYK (with probabilities)

function CYK(G, w1 ... wn):
   ⟨initialize T and B⟩
   for i in 1 ... n do
      for all nonterminals A in G do
         T[i-1, i, A] = P(A → wi)
      for j in i - 2 ... 0 do
         for k in j + 1 ... i - 1 do
            for all A → B C do
               pr = T[j, k, B] ⨉ T[k, i, C] ⨉ P(A → B C)

               if pr > T[j, i, A] then
                  T[j, i, A] = pr 
                  B[j, i, A] = ⟨construct subtree⟩
   return ⟨B[0, n, S] and T[0, n, S]⟩
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Learning PCFG Probabilities

■ Option #1
count frequencies of rules in syntactically annotated 
treebanks (such as the Penn Treebank)

■ Option #2
Inside-outside algorithm (not discussed here)
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Learning PCFG Probabilities

■ We are given a syntactically annotated corpus
■ annotated corpus = a set of derivation trees

■ We can construct a grammar from the treebank by 
identifying the rules with all “subtrees” of height 1

■ Estimating rule probabilities:

■ P(A → α) = 

■ count(A → α) = the number of times the rule A → α has 
been used in all trees in the corpus
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count(A → α)

Σβ count(A → β)



Learning PCFG Probabilities

■ A very small treebank:
■ S1: [S [NP grass] [VP grows]]
■ S2: [S [NP grass] [VP grows] [AP fast]]
■ S3: [S [NP grass] [VP grows] [AP slowly]]
■ S4: [S [NP bananas] [VP grow]]

■ Rules & rule probabilities:
■ S → NP VP! 2/4
■ S → NP VP AP! 2/4
■ NP → grass! 3/4
■ …

21

(Example: Webber/Keller)

Learning PCFG Probabilities
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RuleRule P(A → α)

r1 ! S!→ NP VP 2/4

r2 ! S!→ NP VP AP 2/4

r3 !NP!→ grass 3/4

r4 !NP!→ bananas 1/4

r5 !VP!→ grows 3/4

r6 !VP!→ grow 1/4

r7 !AP!→ fast 1/2

r8 !AP!→ slowly 1/2



Learning PCFG Probabilities

■ Probabilities of the sentences:
■ P(S1) = P(r1) ⨉ P(r3) ⨉ P(r5) = 2/4 ⨉ 3/4 ⨉ 3/4 = 0.28125
■ P(S2) = P(r2) ⨉ P(r3) ⨉ P(r5) ⨉ P(r7) = 0.140625

■ P(S3) = P(r2) ⨉ P(r3) ⨉ P(r5) ⨉ P(r7) = 0.140625
■ P(S4) = P(r1) ⨉ P(r4) ⨉ P(r6) = 0.03125
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Evaluation

■ Coverage: How many sentences are well-formed 
according to the grammar?

■ Accuracy: How many sentences are correctly parsed?
■ measured as “relative correctness” wrt. to category label, 

start and end position (yield) of all constituents (subtrees)
■ Labelled precision: percentage of correct subtrees in the 

parser output
■ Labelled recall: percentage of correct subtrees in the 

gold standard (test corpus)

24



Evaluation

■ Labelled Precision = C / M

■ Labelled Recall = C / N

■ where
■ C = number of correct constituents produced by the parser
■ M = total number of constituents produced by the parser
■ N = total number of constituents in reference corpus
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Binarization
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■ Replace rules of the form A → A1 A2 A3 … Ak [p] by
■ A → ⟨A1,…,Ak-1⟩ Ak! ! ! [p]
■ ⟨A1,…,Ak-1⟩ → A1 … Ak-1! [1.0]

■ … or binarize trees in the treebank before “reading off” 
the grammar from the trees.



Problems

■ The probability of a (sub) tree is indipendant of
■ the context in which the tree occurs
■ the node(s) that dominates the tree

■ Problems: we want to capture …
■ Lexical dependencies
■ Structural dependencies

27

T

Lexical Dependencies

■ The two trees differ only in one rule:
■ VP → VP PP
■ NP → NP PP
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Lexical Dependencies

■ The two trees differ only in one rule:
■ VP → VP PP
■ NP → NP PP

■ ⇒ the grammar will either
■ always prefer the 1st rule (VP attachment) or
■ always prefer the 2nd rule (NP-attachment)

■ But …
■ Workers dumped sacks into a bin
■ Fishermen caught tons of herring

■ ⇒ Lexikalized PCFG

29

Lexical Dependencies

30

come take think want

 VP → V 9.5% 2.6% 4.6% 5.7%

 VP → V NP 1.1% 32.1% 0.2% 13.9%

 VP → V PP 35.5% 3.1% 7.1% 0.3%

 VP → V SBAR 6.6% 0.3% 73.0% 0.2%

 VP → V S 2.2% 1.3% 4.8% 70.8%

 VP → V NP S 0.1% 5.7% 0.0% 0.3%

 VP → V PRT NP 0.3% 5.8% 0.0% 0.0%

 VP → V PRT PP 6.1% 1.5% 0.2% 0.0%

 … … … … …

(Manning & Schütze)



Structural dependencies

■ Structural independencies:
■ The (probability of an) application of a rule is independent 

of all other rules in the derivation tree
■ NP → Pronoun vs. NP → Det Noun

same probabilities for all occurrences of NP

■ But … (Francis &al, 1999)
■ Subject-NP: 91% pronouns, 9% non-pronouns
■ Object-NP: 34% pronouns, 66% non-pronouns
■ (Switchboard corpus, spoken language)

■ ⇒ Parent annotation
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Structural dependencies

■ Some dependencies can be “built into” the category 
symbols.

32

S

NP

VBD

need

NP

NNDT

a flight

I

VP

PRP

S

NP-SBJ

VBD

need

NP

NNDT

a flight

I

VP

PRP

S!ROOT

NP!S

VBD

need

NP!VP

NNDT

a flight

I

VP!S

PRP



Structural dependencies

■ Parent Annotation: nodes are annotated with the 
label of their parent nodes

■ Similar effect compared to 
conditional probabilities
■ P(NP∧S → PRP)
■ P(NP → PRP | S)

■ Compare:
■ P(NP-SBJ → PRP) – no correspondence to conditional 

probabilities
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Structural dependencies

■ Parent annotation can also be useful for preterminal 
nodes 

■ Most frequent adverbs with parent …
■ ADVP – also, now
■ VP – not, n’t
■ NP – only, just

■ Penn Treebank – no distinction (same POS) between 
■ subordinating conjunctions (while, as, if), 
■ complementizers (that, for) 
■ prepositions (of, in, from) 
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Structural dependencies

■ Parent annotation can also be useful for preterminal 
nodes 
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Structural dependencies

■ Parent annotation – drawbacks
■ the grammar gets larger
■ fewer training data for each rule
■ reduced generalization (“overfitting”)
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Lexical dependencies

■ The head of a constituent is the “central” word of a 
phrase
■ Noun – NP
■ Verb – VP, S
■ Adjektive – AP
■ Preposition – PP
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Lexical dependencies

■ Lexicalized parsing: annotate nodes with their lexical 
heads
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Lexical dependencies
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RuleRule P(A → α)

r1 ! Sdumpled!→ NPworkers VPdumped 1/1

r2 ! NPworkers!→ NNSworkers 1/1

r3 ! NPsacks!→ NNSsacks 1/2

r4 ! NPsacks!→ NPsacks PPinto 1/2

r5 ! NPbin!→ DTa NNbin 1/1

… ! !… …

Lexical dependencies

■ Problems: 
■ this leads to much larger grammars
■ its hard to estimate the rule probabilities
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Lexicalized parsing

■ Complexity (CYK)
■ Runtime: O(|rules|n3),
■ Wost case: |rules| = |nonterminals|3

■ Lexicalized grammars
■ Worst case: |rules| = |nonterminals|3 · |terminals|2

■ |terminals| usually much larger than |nonterminals|
■ ⇒ O(n5) runtime for typical grammars and input sentences
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