Computational Linguistics Latent Spaces and Matrix Factorization

Dietrich Klakow

FR 4.7 Allgemeine Linguistik (Computerlinguistik)
Universität des Saarlandes
Summer 2012

Goal

Goal:
treat document clustering and word clustering on the same footing (same semantic space)
find low dimensional representations

The word document matrix

Clustering

Document clustering
describe each document by a vector containing the frequencies of the words

Word clustering
describe each word by a vector containing the frequencies of its occurance in different document

Joint word and document clustering

The word document matrix:
Enter frequency (or tf-idf) for each word and document in a square scheme of numbers (matrix)

Matrices

A matrix is an array with two indices

e.g. in a python program this could be $A[i][j]$ with $i=1 . . \mathrm{N}$ and $\mathrm{j}=1$...M When writing, often a subscript notation is used $a_{i, j}$
or a square scheme: $\quad A=\left(\begin{array}{ccc}a_{1,1} & \ldots & a_{1, M} \\ \ldots & a_{i, j} & \ldots \\ a_{N, 1} & \ldots & a_{N, M}\end{array}\right)$
Specific example of a 2×3 matrix

$$
A=\left(\begin{array}{ccc}
2 & -5 & 0.5 \\
-2 & 0.1 & -8
\end{array}\right)
$$

The transpose of a matrix

The two indices are swapped
e.g. in a python program this could be $A t[j][i]=A[i] j]$ for $i=1 . . N$ and $j=1$... M
for the matrices from the previous slide we have:

$$
A^{t}=\left(\begin{array}{ccc}
a_{1,1} & \ldots & a_{1, N} \\
\ldots & a_{j, i} & \ldots \\
a_{M, 1} & \ldots & a_{M, N}
\end{array}\right)
$$

Specific example of a 2×3 matrix

$$
A=\left(\begin{array}{ccc}
2 & -5 & 0.5 \\
-2 & 0.1 & -8
\end{array}\right)
$$

What is

Product of two matrices

The elements of a product matrix can be calculated in a python program by for i in range $(1, \mathrm{~N}+1)$: for j in range $(1, \mathrm{M}+1)$:
for k in range $(1, K+1)$:
$C[i][j]=A[i][k]^{*} B[k][j]$

In math notation $\quad C=A \cdot B$
with

$$
c_{i, j}=\sum_{k=1}^{K} a_{i, k} b_{k, j}
$$

Unit matrix

Unit matrix: the element are the indicator function

$$
a_{i, j}=\delta_{i, j}
$$

Example:

$$
A=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Often the unit matrix is denoted by a 1

Orthogonal matrices

a matrix A is orthogonal if

$$
1=A^{t} \cdot A
$$

Is the following matrix orthogonal:

$$
A=\left(\begin{array}{cc}
0.96 & -0.28 \\
0.28 & 0.96
\end{array}\right)
$$

Latent Semantic Analysis (LSA)

Singular Value Decomposition

Decompose A such that

$$
\widetilde{A}=T S D^{t}
$$

With $|\tilde{A}-A|^{2} \quad$ minimal and

$$
T^{t} \cdot T=1 \quad D^{t} \cdot D=1
$$

A a t by d matrix $\quad T$ at by n matrix
S an by n matrix $\quad D$ ad by n matrix

An artificial Example of

Singular Value Decomposition

Is

$$
T=\binom{\frac{1}{\sqrt{2}}}{-\frac{1}{\sqrt{2}}}
$$

An SVD of

$$
S=(2 \sqrt{2}) \quad D=\left(\begin{array}{c}
\frac{1}{2} \\
\frac{1}{2} \\
-\frac{1}{2} \\
-\frac{1}{2}
\end{array}\right)
$$

$$
A=\left(\begin{array}{cccc}
1 & 1 & -1 & -1 \\
-1 & -1 & 1 & 1
\end{array}\right)
$$

More realistic Example
(from Manning and Schütze)

Decompose

$$
A=\left(\begin{array}{l|llllll}
& d_{1} & d_{2} & d_{3} & d_{4} & d_{5} & d_{6} \\
\hline \text { cosmonaut } & 1 & 0 & 1 & 0 & 0 & 0 \\
\text { astronaut } & 0 & 1 & 0 & 0 & 0 & 0 \\
\text { moon } & 1 & 1 & 0 & 0 & 0 & 0 \\
\text { car } & 1 & 0 & 0 & 1 & 1 & 0
\end{array}\right)
$$

More realistic Example

(from Manning and Schütze)

$$
D^{\mathrm{t}}=\left(\begin{array}{l|rrrrrr}
& d_{1} & d_{2} & d_{3} & d_{4} & d_{5} & d_{6} \\
\hline \text { Dimension 1 } & -0.75 & -0.28 & -0.20 & -0.45 & -0.33 & -0.12 \\
\text { Dimension 2 } & -0.29 & -0.53 & -0.19 & 0.63 & 0.22 & 0.41 \\
\text { Dimension 3 } & 0.28 & -0.75 & 0.45 & -0.20 & 0.12 & -0.33 \\
\text { Dimension 4 } & 0.00 & 0.00 & 0.58 & 0.00 & -0.58 & 0.58 \\
\text { Dimension 5 } & -0.53 & 0.29 & 0.63 & 0.19 & 0.41 & -0.22
\end{array}\right)
$$

$$
T^{\mathrm{t}}=\left(\begin{array}{l|rrrrr}
& \text { cosm. } & \text { astr. } & \text { moon } & \text { car } & \text { truck } \\
\hline \text { Dimension 1 } & -0.44 & -0.13 & -0.48 & -0.70 & -0.26 \\
\text { Dimension 2 } & -0.30 & -0.33 & -0.51 & 0.35 & 0.65 \\
\text { Dimension 3 } & 0.57 & -0.59 & -0.37 & 0.15 & -0.41 \\
\text { Dimension 4 } & 0.58 & 0.00 & 0.00 & -0.58 & 0.58 \\
\text { Dimension 5 } & 0.25 & 0.73 & -0.61 & 0.16 & -0.09
\end{array}\right)
$$

More realistic Example

(from Manning and Schütze)

$$
S=\left(\begin{array}{lllll}
2.16 & 0.00 & 0.00 & 0.00 & 0.00 \\
0.00 & 1.59 & 0.00 & 0.00 & 0.00 \\
0.00 & 0.00 & 1.28 & 0.00 & 0.00 \\
0.00 & 0.00 & 0.00 & 1.00 & 0.00 \\
0.00 & 0.00 & 0.00 & 0.00 & 0.39
\end{array}\right)
$$

Document-Document Similarity

Rewrite A

$$
\begin{aligned}
& A=\left(\begin{array}{llll}
1 & 1 & & 1 \\
d_{1} & d_{2} & \ldots & d_{d}
\end{array}\right) \\
& \text { with }{\underset{d}{j}} \text { a vector } \\
& \text { with word frequencies of the } \mathrm{j} \text { - th document }
\end{aligned}
$$

Similarity of i-th document with j-th docurfiedt.
All document-document similariti $A_{\mathrm{s}}^{t} A$

Document-Document Similarity

$$
\begin{aligned}
\text { Rewrite } & \widetilde{A}^{t} \widetilde{A}= \\
& =\left(T S D^{t}\right)^{t} T S D^{t} \\
& =D S^{t} T^{t} T S D^{t} \\
& =D S^{t} S D^{t} \\
& =\left(S D^{t}\right)^{t} S D^{t}
\end{aligned}
$$

Measure similarity in subspace defined $S D^{t}$ by

More realistic Example

(from Manning and Schütze)

Result for $S D^{t}$

	d_{1}	d_{2}	d_{3}	d_{4}	d_{5}	d_{6}
Dimension 1	-1.62	-0.60	-0.04	-0.97	-0.71	-0.26
Dimension 2	-0.46	-0.84	-0.30	1.00	0.35	0.65

More realistic Example

(from Manning and Schütze)

Decompose A such that

	d_{1}	d_{2}	d_{3}	d_{4}	d_{5}	d_{6}
d_{1}	1.00					
d_{2}	0.78	1.00				
d_{3}	0.40	0.88	1.00			
d_{4}	0.47	-0.18	-0.62	1.00		
d_{5}	0.74	0.16	-0.32	0.94	1.00	
d_{6}	0.10	-0.54	-0.87	0.93	0.74	1.00

An even more realistic example

An even more realistic example

Document-Document Similarity

Representation for Documents in 2

dimensional Subspace

Term-Term Similarity

$$
\begin{aligned}
\text { Rewrite } & \tilde{A} \widetilde{A}^{t}= \\
& =\left(T S D^{t}\right)\left(T S D^{t}\right)^{t} \\
& =T S D^{t} D S^{t} T^{t} \\
& =T S^{t} S T^{t} \\
& =(T S)(T S)^{t}
\end{aligned}
$$

Measure similarity in subspace defined $T S$ by

Task

How does your programming language support SVD
Do some internet search (~ 10 minutes)
Report your findings

Homework

See sheet

LSA Performance

- LSA consistently improves recall on standard test collections (precision/recall generally improved)
- Variable performance on larger TREC collections
- Dimensionality of Latent Space - a magic number - 300-1000 seems to work fine - no satisfactory way of assessing value.
- Computational cost high

Application (by Landauer et. Al)

Probabilistic Latent Semantic Analysis (PLSA)

Motivation

- Does orthogonally matter?
- Wouldn't a sound statistical foundation be better?

PLSA

Likelihood of document

$$
P(\text { doc })=P\left(\text { term }_{l} \mid \text { doc }\right) P\left(\text { term }_{2} \mid \text { doc }\right) \ldots P\left(\text { term }_{L} \mid \text { doc }\right)
$$

Introduce term-frequency matrix X

$$
\prod_{l=1}^{L} P\left(\text { term }_{l} \mid d o c\right)=\prod_{t=1}^{T} P\left(\text { term }_{t} \mid d o c\right)^{A\left(t \operatorname{term}_{t}, d o c\right)}
$$

PLSA

Introduce hidden topic

$$
P\left(\text { term }_{t} \mid \text { doc }\right)=\sum_{k=1}^{K} P\left(\text { term }_{t} \mid \text { topic }_{k}\right) P\left(\text { topic }_{k} \mid \text { doc }\right)
$$

Shorthand $\mathrm{t}=$ term_t

$$
P(t \mid d o c)=\sum_{k=1}^{K} P(t \mid k) P(k \mid d o c)
$$

Likelihood of document

$$
P(d o c)=\prod_{t=1}^{T}\left\{\sum_{k=1}^{K} P(t \mid k) P(k \mid d o c)\right\}^{A(t, d o c)}
$$

PLSA: training

Training objective function

$\sum_{d=1}^{N} \log P(d)=\sum_{d=1}^{N} \sum_{t=1}^{T} A(t, d) \log \sum_{k=1}^{K} P(t \mid k) P(k \mid d)$
which is to be maximised w.r.t. parameters $\mathrm{P}(t \mid k)$ and then also $\mathrm{P}(k \mid d)$, subject to the constraints that $\sum_{t=1}^{T} P(t \mid k)=1$ and $\sum_{k=1}^{K} P(k \mid d)=1$.

PLSA: training

Update term-topic matrix

$$
\begin{aligned}
& P 1(t, k) \leftarrow P 1(t, k) \sum_{d=1}^{N} \frac{A(t, d)}{\sum_{k=1}^{K} P 1(t, k) P 2(k, d)} P 2(k, d) \\
& P I(t, k) \leftarrow \frac{P 1(t, k)}{\sum_{t=1}^{T} P I(t, k)}
\end{aligned}
$$

Update topic-document matrix

$$
\begin{aligned}
& P 2(k, d) \leftarrow P 2(k, d) \sum_{i=1}^{T} \frac{A(t, d)}{\sum_{k=1}^{K} P 1(t, k) P 2(k, d)} P 1(t, k) \\
& P 2(k, d) \leftarrow \frac{P 2(k, d)}{\sum_{k=1}^{K} P 2(k, d)}
\end{aligned}
$$

PLSA

$P(t \mid k)$ for some

universe	0.0439	drug	0.0672
galaxies	0.0375	patients	0.0493
clusters	0.0279	drugs	0.0444
matter	0.0233	clinical	0.0346
galaxy	0.0232	treatment	0.028
cluster	0.0214	trials	0.0277
cosmic	0.0137	therapy	0.0213
dark	0.0131	trial	0.0164
light	0.0109	disease	0.0157
density	0.01	medical	0.00997
bacteria	0.0983	male	0.0558
bacterial	0.0561	females	0.0541
resistance	0.0431	female	0.0529
coli	0.0381	males	0.0477
strains	0.025	sex	0.0339
microbiol	0.0214	reproductive	0.0172
microbial	0.0196	offspring	0.0168
strain	0.0165	sexual	0.0166
salmonella	0.0163	reproduction	0.0143
resistant	0.0145	eggs	0.0138

cells	0.0675
stem	0.0478
human	0.0421
cell	0.0309
gene	0.025
tissue	0.0185
cloning	0.0169
transfer	0.0155
blood	0.0113
embryos	0.0111
theory	0.0811
physics	0.0782
physicists	0.0146
einstein	0.0142
university	0.013
gravity	0.013
black	0.0127
theories	0.01
aps	0.00987
matter	0.00954

sequence	0.0818	years	0.156
sequences	0.0493	million	0.0556
genome	0.033	ago	0.045
dna	0.0257	time	0.0317
sequencing	0.0172	age	0.0243
map	0.0123	year	0.024
genes	0.0122	record	0.0238
chromosome	0.0119	early	0.0233
regions	0.0119	billion	0.0177
human	0.0111	history	0.0148
immune	0.0909	stars	0.0524
response	0.0375	star	0.0458
system	0.0358	astrophys	0.0237
responses	0.0322	mass	0.021
antigen	0.0263	disk	0.0173
antigens	0.0184	black	0.0161
immunity	0.0176	gas	0.0149
immunology	0.0145	stellar	0.0127
antibody	0.014	astron	0.0125
autoimmune	0.0128	hole	0.00824

Comparison LSA and PLSA

From Th. Hofmann, 2000

Non-negative Matrix Factorization

See: Document Clustering Based On Non-negative Matrix Factorization

Wei Xu, Xin Liu, Yihong Gong
NEC Laboratories America, Inc.
10080 North Wolfe Road, SW3-350
Cupertino, CA 95014, U.S.A.
\{xw,xliu,ygong\}@ccrl.sj.nec.com

NMF: idea

- Find space that separates clusters better

Directions found by LSI

Directions found by NMF

NMF: the model

- Decompostion of a non-negaitve matrix X in two matrices W and H both nonnegative

$$
A=W H
$$

- A: $\mathrm{N} \times \mathrm{M}$ - data matrix
- W: N x R - source matrix
- H: R×M-mixture matrix

NMF: the model

- Determine W and H such that the product WH is as close as possible to A
- W and H are bound to be non-negative values
- Possible metrics
- Kullback-Leibler-Divergenz
- Frobenius-Norm

$$
\begin{gathered}
D(A \mid W H) \\
\frac{1}{2}|A-W H|^{2}
\end{gathered}
$$

NMF: training

Update

$$
\begin{aligned}
H_{a b} & \left.=H_{a b} \frac{\left(W^{t} A\right)_{a b}}{\left(W^{t} W H\right.}\right)_{a b}+\varepsilon \\
W_{a b} & =W_{a b} \frac{\left(A H^{t}\right)_{a b}}{\left(W H H^{t}\right)_{a b}+\varepsilon}
\end{aligned}
$$

In case the denominator vanishes, add a small number

Homework

Implement NMF for the matrix from the last lecture

Summary

Ways to find latent "semantic" spaces:

- LSA
- PLSA
- NMF

Similar factorizations
Different target functions and constraints

