Computational Linguistics

Latent Spaces and
 Matrix Factorization

Dietrich Klakow

FR 4.7 Allgemeine Linguistik (Computerlinguistik)
Universität des Saarlandes
Summer 2012

Goal

Goal:

treat document clustering and word clustering on the same footing (same semantic space)
find low dimensional representations

Clustering

Document clustering

describe each document by a vector containing the frequencies of the words

Word clustering

describe each word by a vector containing the frequencies of its occurance in different document

Joint word and document clustering

The word document matrix:
Enter frequency (or tf-idf) for each word and document in a square scheme of numbers (matrix)

Matrices

A matrix is an array with two indices
e.g. in a python program this could be $A[i][j]$ with $i=1 . . N$ and $j=1 . . . M$

When writing, often a subscript notation is used $a_{i, j}$
or a square scheme: $\quad A=\left(\begin{array}{ccc}a_{1,1} & \ldots & a_{1, M} \\ \ldots & a_{i, j} & \ldots \\ a_{N, 1} & \ldots & a_{\prime_{N, M}}\end{array}\right)$
Specific example of a 2×3 matrix

$$
A=\left(\begin{array}{ccc}
2 & -5 & 0.5 \\
-2 & 0.1 & -8
\end{array}\right)
$$

The transpose of a matrix

The two indices are swapped
e.g. in a python program this could be At [j][i]=A[i][j] fori=1..N and $j=1 \ldots M$
for the matrices from the previous slide we have: $\quad A^{t}=\left(\begin{array}{ccc}a_{1,1} & \ldots & a_{1, N} \\ \ldots & a_{j, i} & \ldots \\ a_{M, 1} & \ldots & a_{M, N}\end{array}\right)$

Specific example of a 2×3 matrix $\quad A=\left(\begin{array}{ccc}2 & -5 & 0.5 \\ -2 & 0.1 & -8\end{array}\right)$

What is A^{t}

Product of two matrices

The elements of a product matrix can be calculated in a python program by

```
for i in range(1,N+1):
    for j in range(1,M+1):
    for k in range(1,K+1):
    C[i][j] = A[i][k]*B[k][j]
```

In math notation $\quad C=A \cdot B$
with

$$
c_{i, j}=\sum_{k=1}^{K} a_{i, k} b_{k, j}
$$

Unit matrix

Unit matrix: the element are the indicator function

$$
a_{i, j}=\delta_{i, j}
$$

Example:

$$
A=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Often the unit matrix is denoted by a 1

Orthogonal matrices

a matrix A is orthogonal if

$$
1=A^{t} \cdot A
$$

Is the following matrix orthogonal:

$$
A=\left(\begin{array}{cc}
0.96 & -0.28 \\
0.28 & 0.96
\end{array}\right)
$$

