Computational Linguistics

Clustering

Dietrich Klakow

FR 4.7 Allgemeine Linguistik (Computerlinguistik) Universität des Saarlandes Summer 2012

Cluster Analysis

Goal:

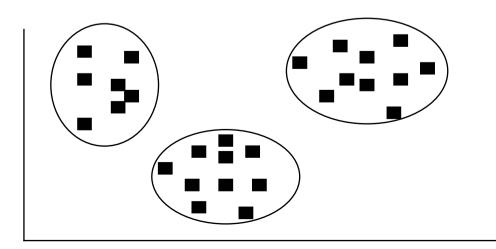
group similar items together in a group

Steps:

define similarity between sample

define a loss function

find an algorithm that minimizes this loss function



Cluster Text (e.g. search results)

EisenLab

Commercial use of the ScanAlyze, Cluster and/or TreeView executable and/or ... Cluster and TreeView are an integrated pair of programs for analyzing and ... rana.lbl.gov/EisenSoftware.htm - 11k - Cached - Similar pages

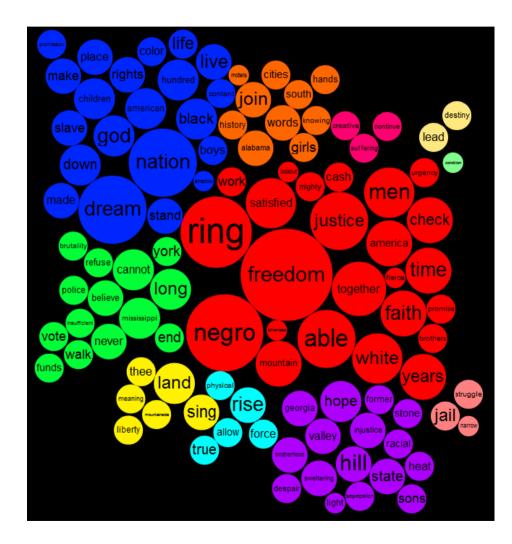
Book results for cluster

The Linux Enterprise Cluster : build a highly ... - by Karl Kopper - 466 pages Messier's Nebulae and Star Clusters - by Kenneth Glyn Jones - 456 pages

	cluster	Search
Search withi	n results Language Tools Search Tips [Dissatisfied? Help us improve

Cluster Word

(speech I have a dream)

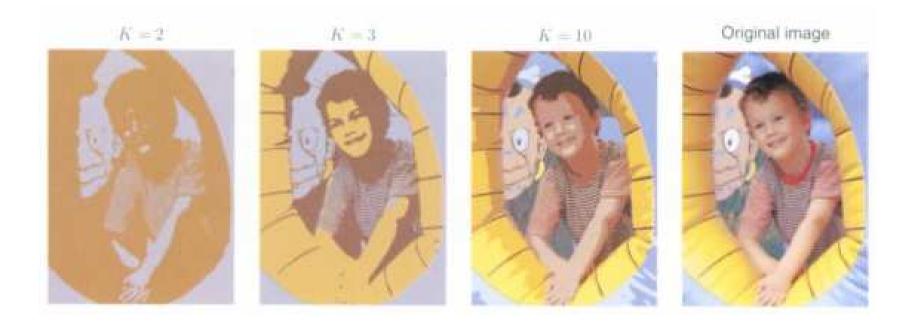


From http://neoformix.com/2011/wcd_KingIHaveADream.png

Cluster Image Regions: Image Segmentation

http://people.cs.uchicago.edu/~pff/segment/

Cluster Image Regions

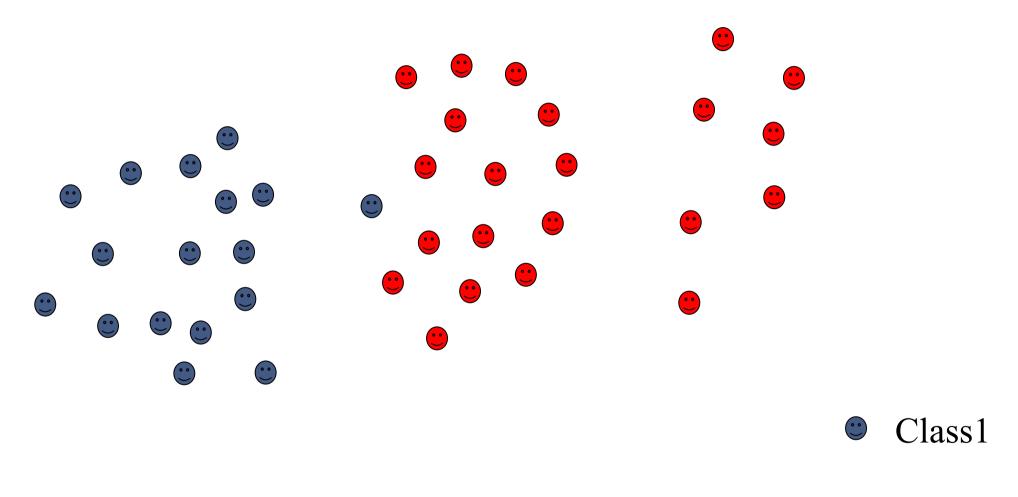


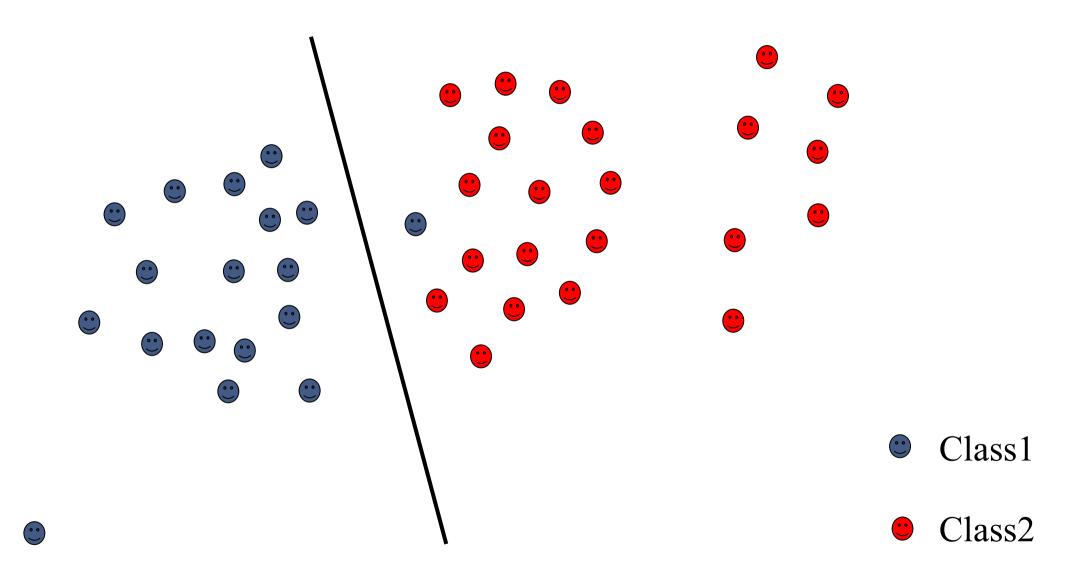
Bishop, PRML

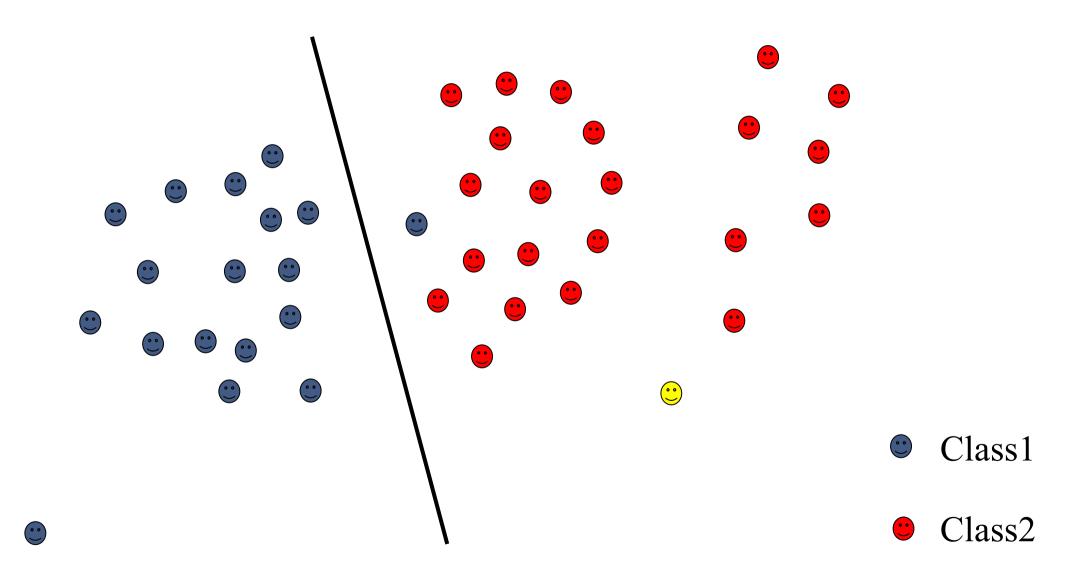
Unsupervised learning

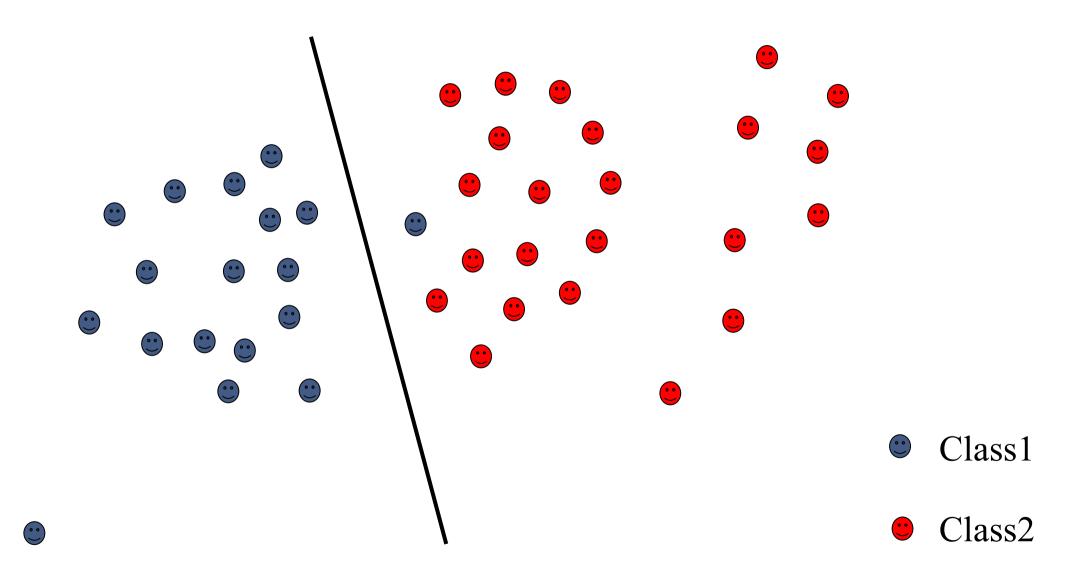
Supervised Classification:

Labels known

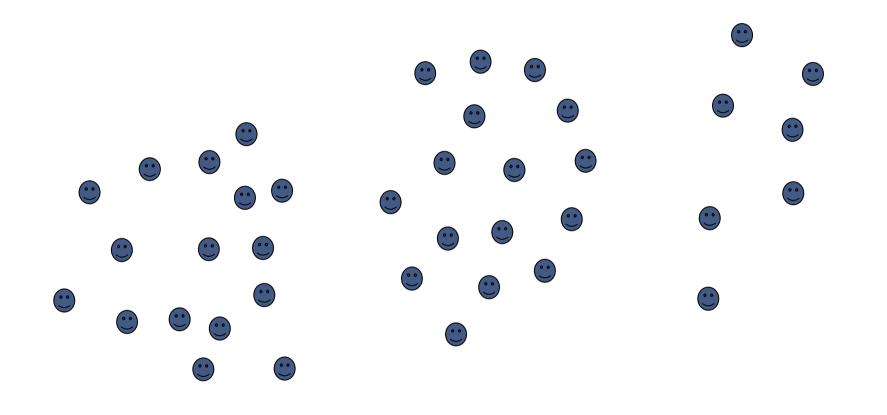






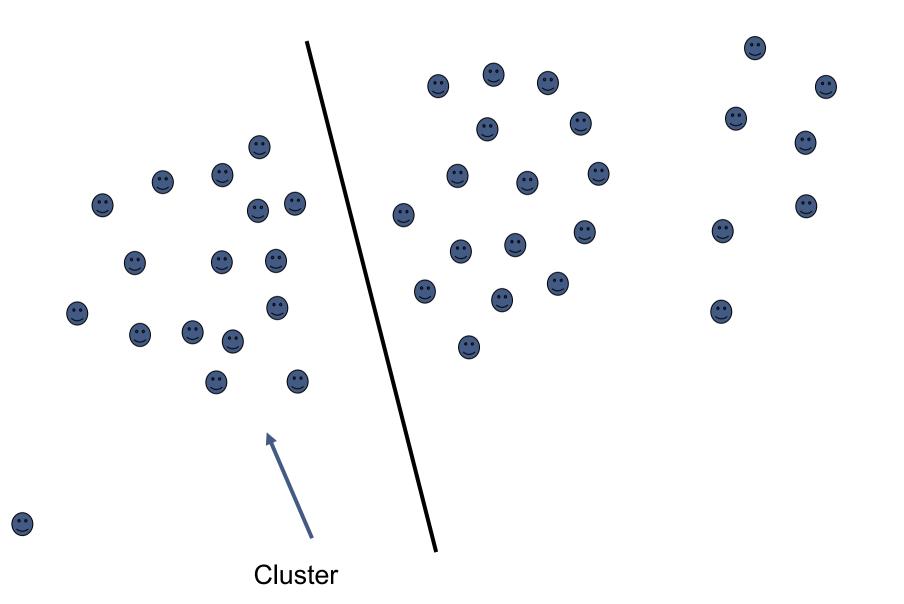


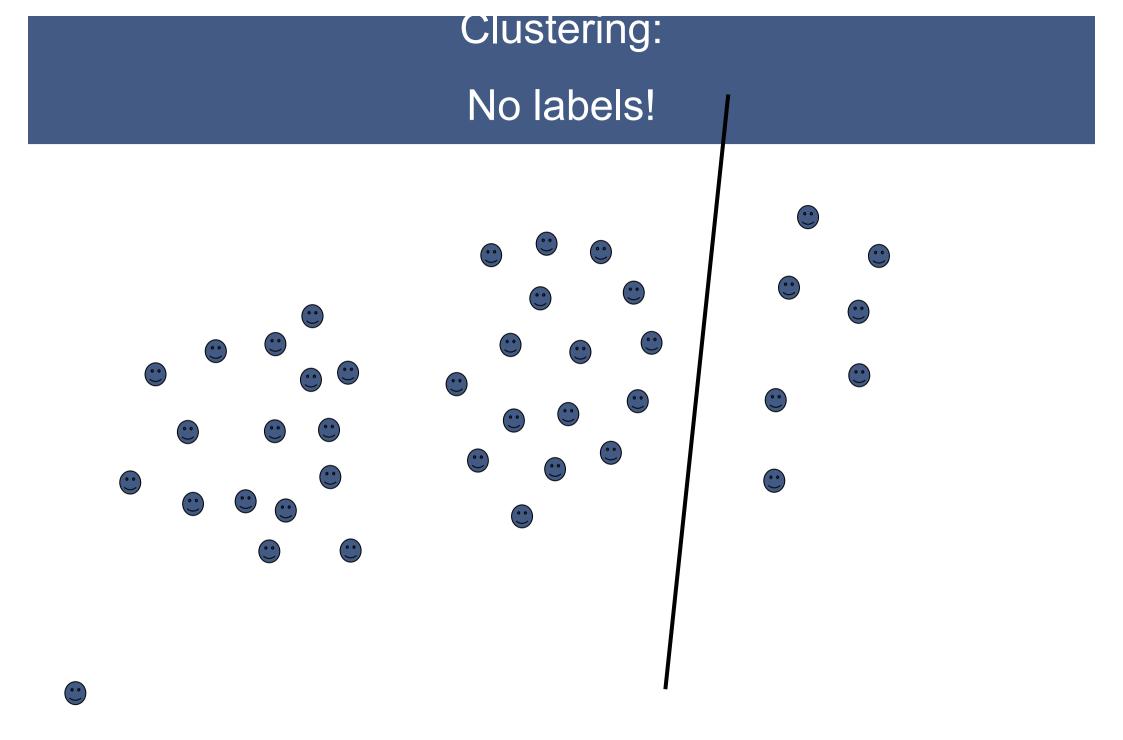
Clustering: No labels!

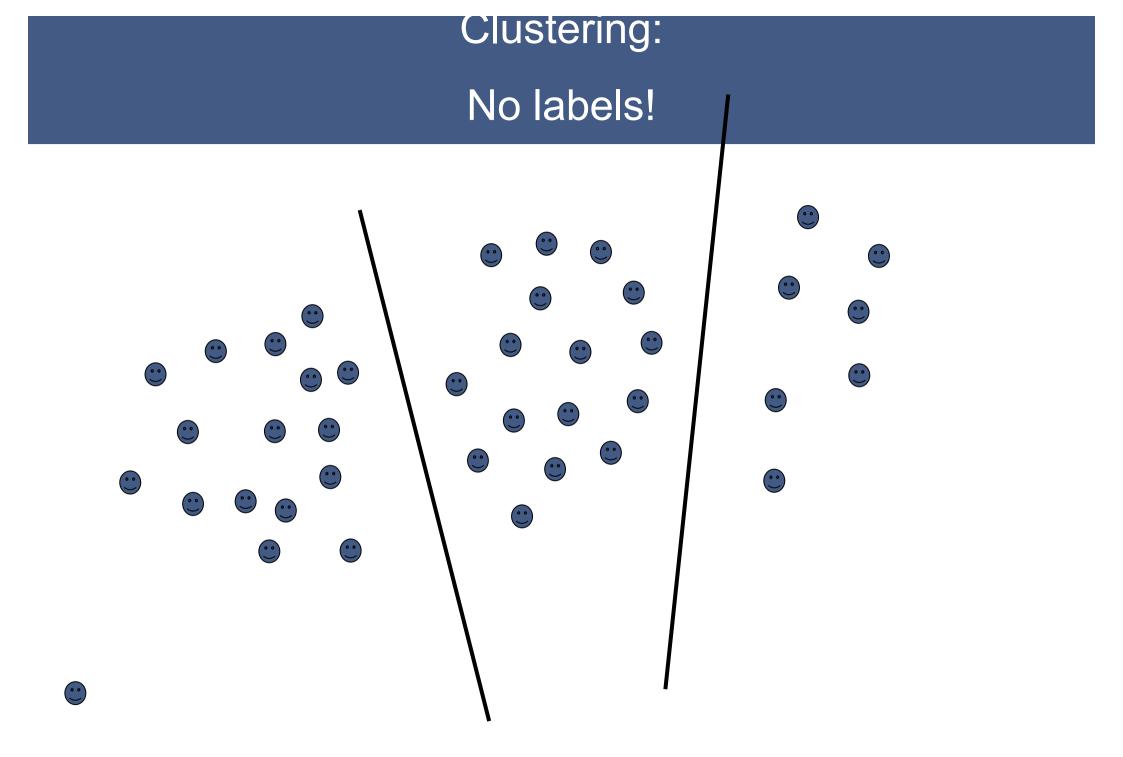


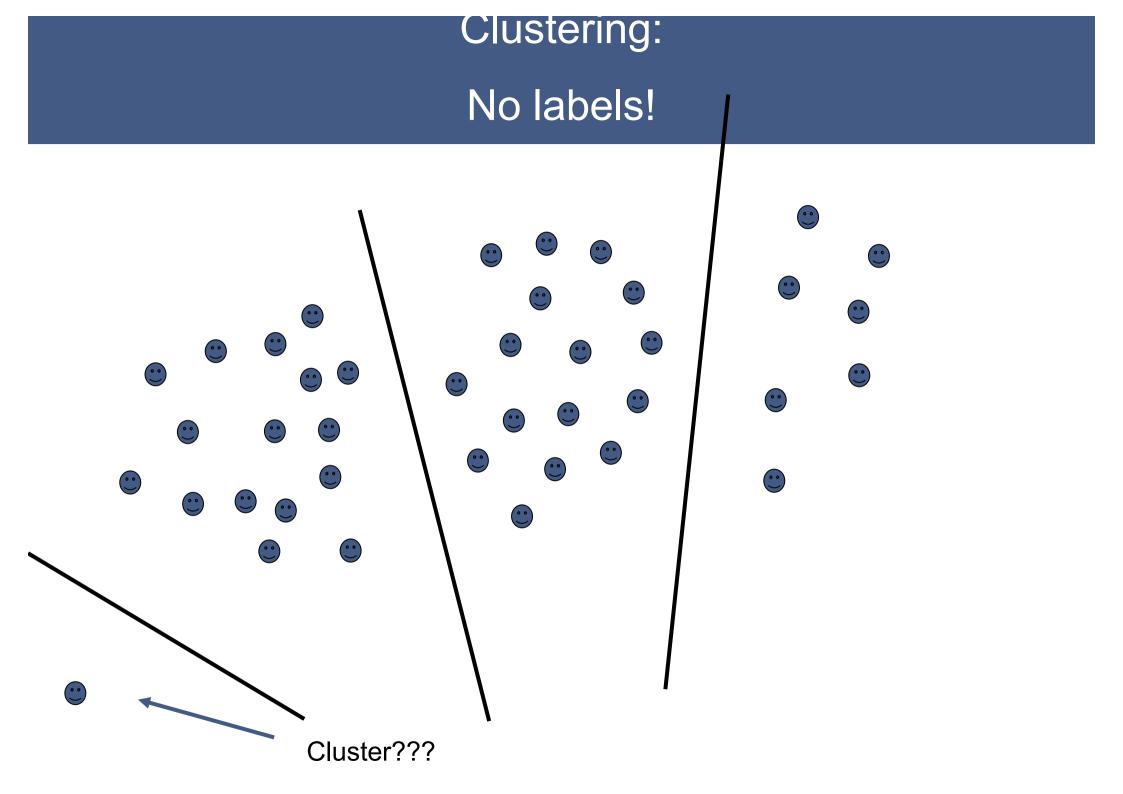
Clustering:

No labels!



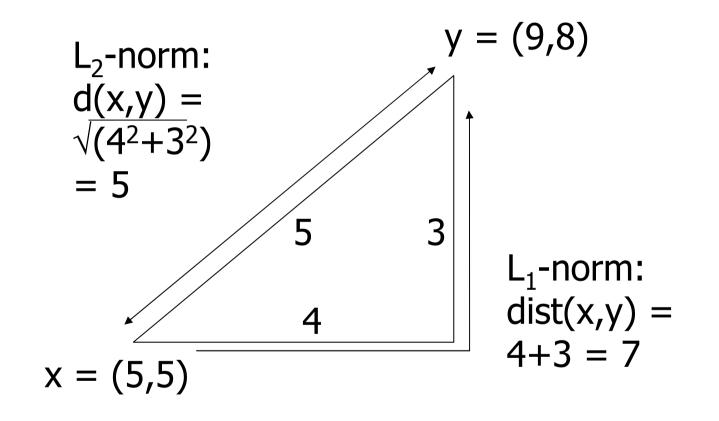






Similarity Measures

Euclidean Distances



Axioms of a Distance Measure

d is a *distance measure* if it is a function from pairs of points to reals such that:

$$\begin{split} &d(x,y) \geq 0, \\ &d(x,y) = 0 \text{ iff } x = y, \\ &d(x,y) = d(y,x), \\ &d(x,y) \leq d(x,z) + d(z,y) \text{ (triangle inequality).} \end{split}$$

Distances measures

L₁ distance (Manhattan distance)

$$d_1(\vec{x}, \vec{y}) = \sum_{k=1}^{K} |x_k - y_k|$$

L₂ distance (Euclidian distance)

$$d_2(\vec{x}, \vec{y}) = \sqrt{\sum_{k=1}^{K} |x_k - y_k|^2}$$

 L_{∞} distance (maximum distance)

 ∞

$$d_{\infty}(\vec{x},\vec{y}) = \max_{k}(|x_{k} - y_{k}|)$$

Calculate the distance of

$$\vec{x} = \begin{pmatrix} 3 \\ -1 \\ 0 \\ 3 \end{pmatrix} \qquad \vec{y} = \begin{pmatrix} 1 \\ 2 \\ 2 \\ 1 \end{pmatrix}$$

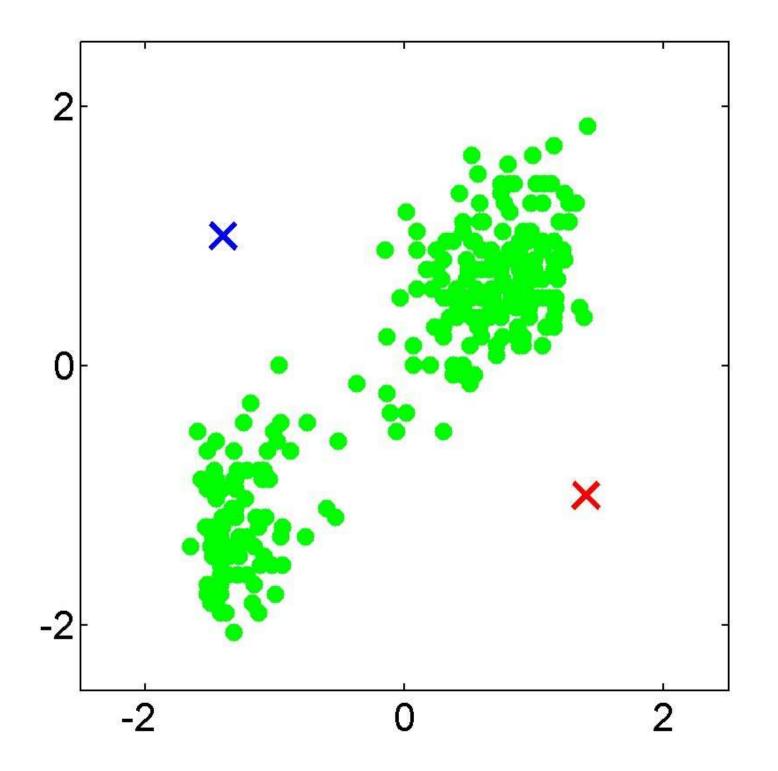
Use all three distance measures introduced on the previous slide

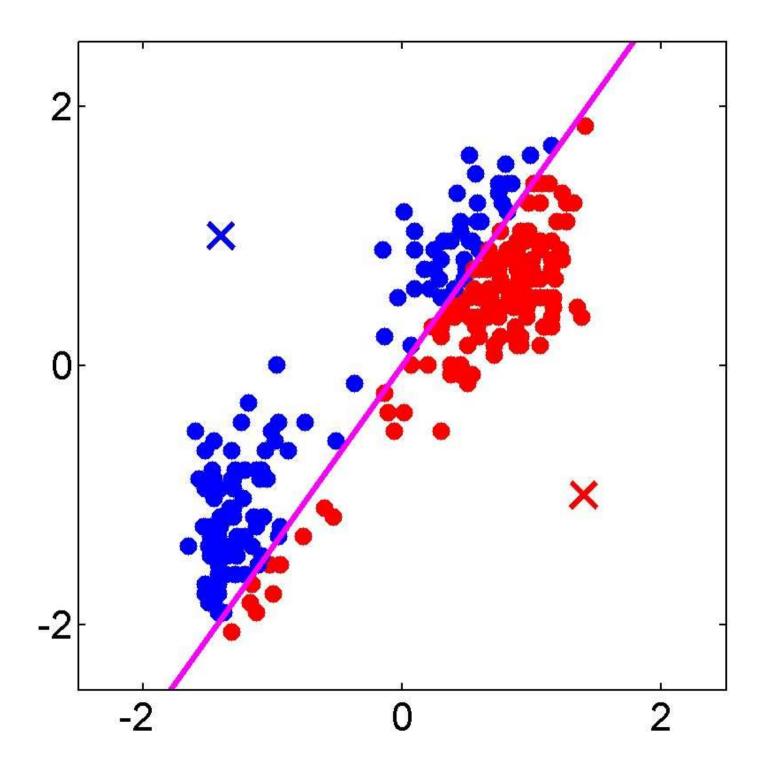
Other distance measures

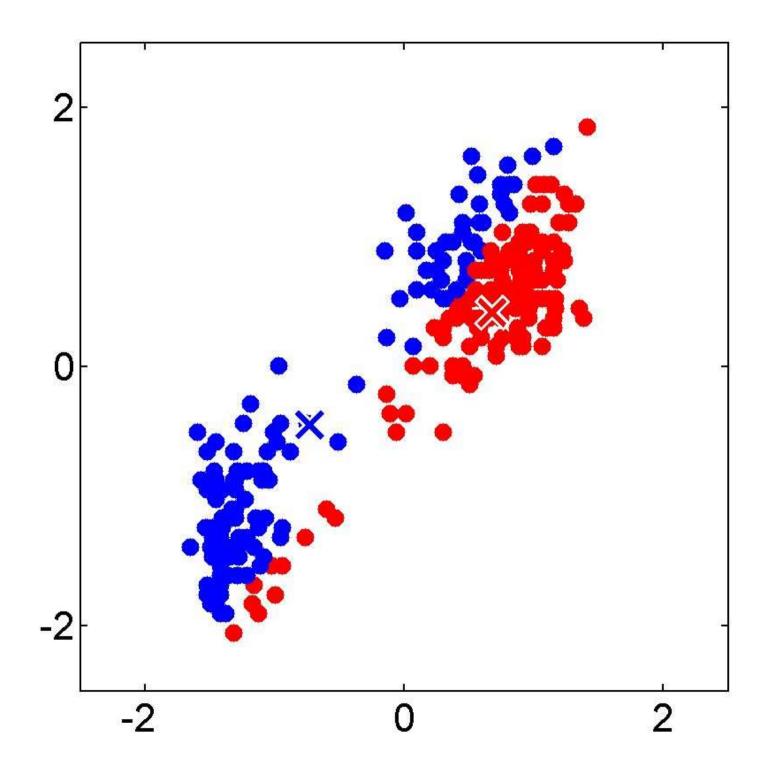
Cosine Edit distance Jaccard Kernels

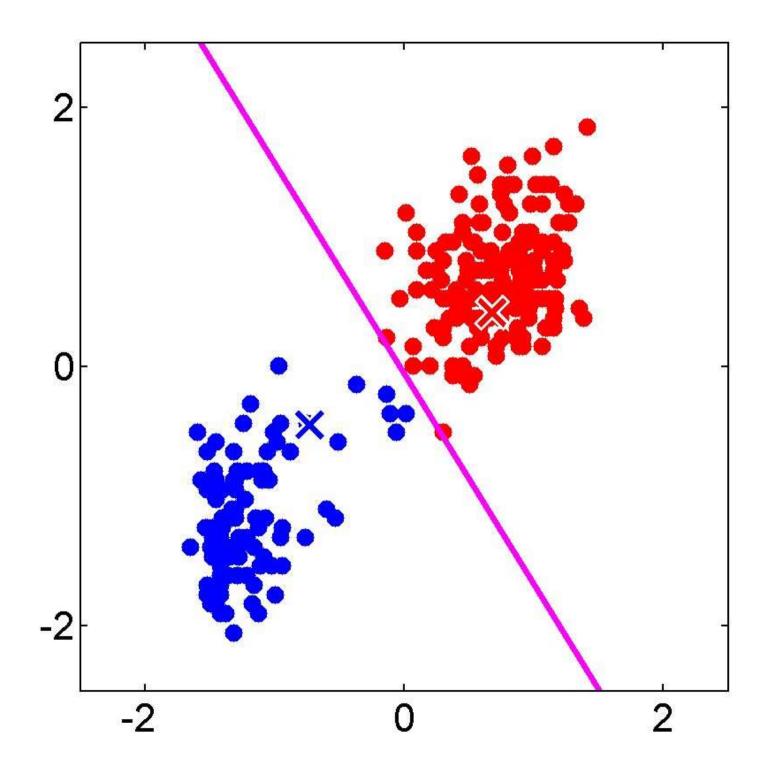
K-Means Clustering

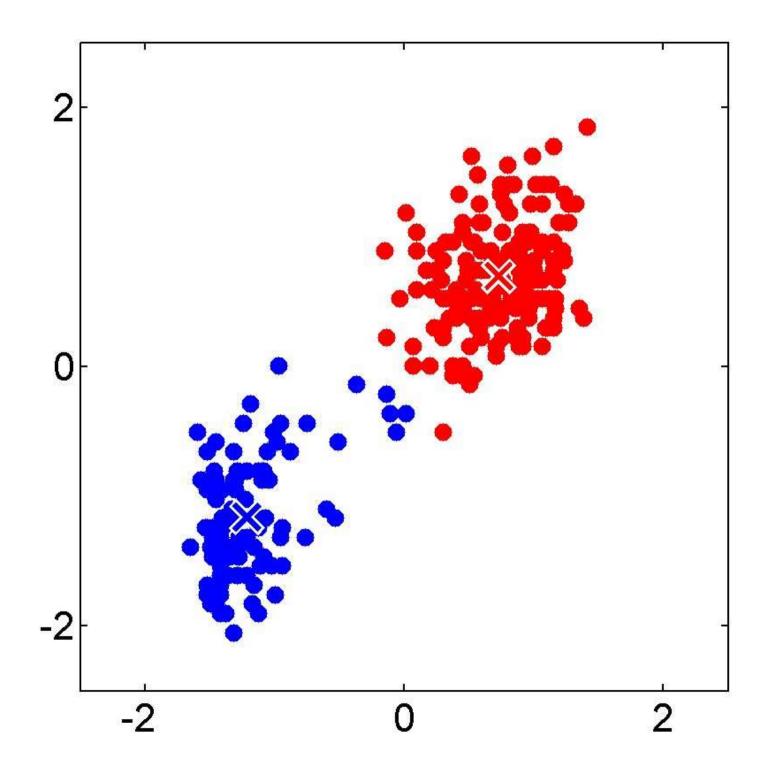
- 1. For each cluster, decide on a mean
- 2. Assign each data point to the nearest mean
- 3. Recalculate means according to assignment
- 4. If mean changed go back to 1

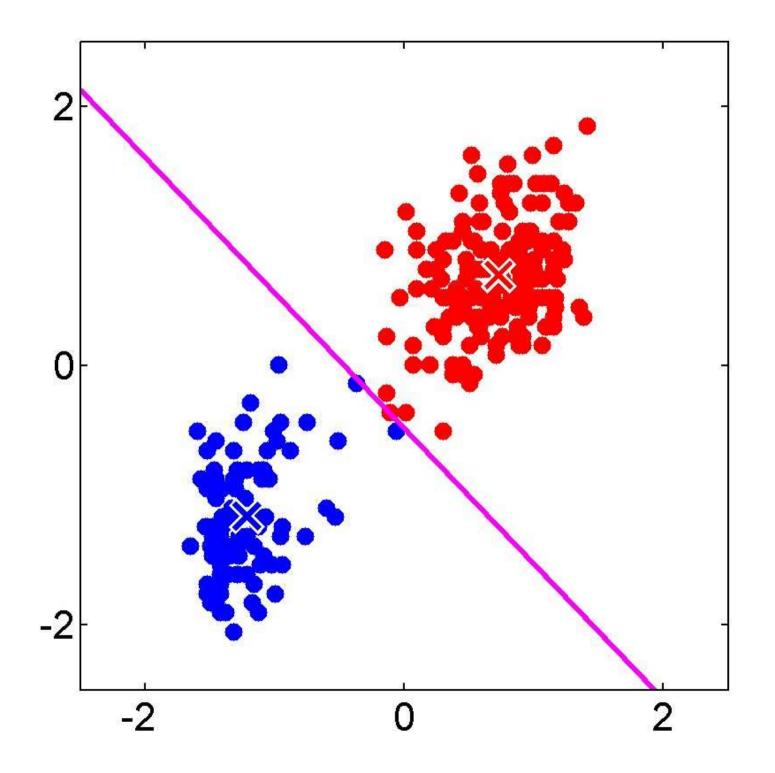


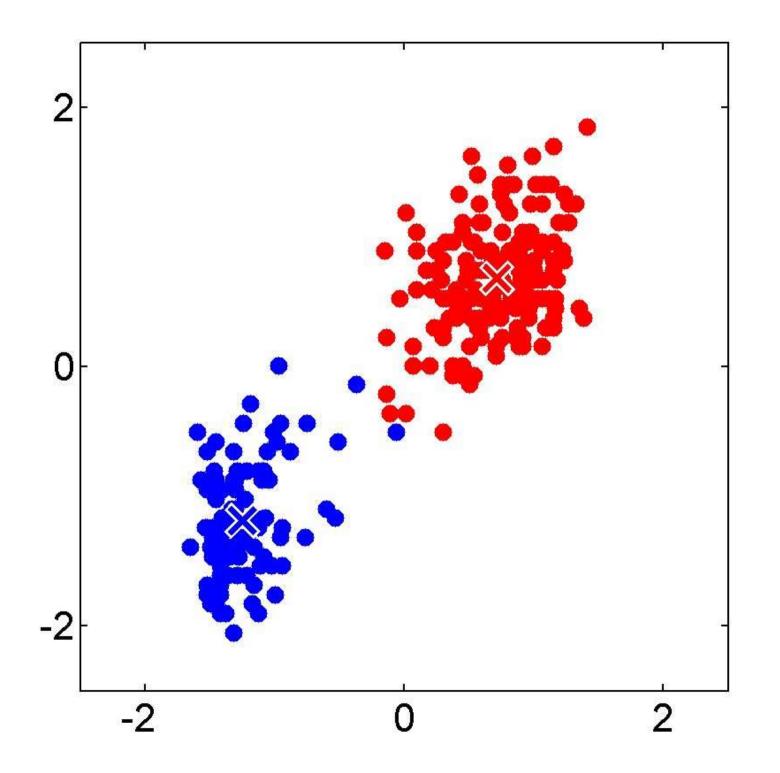


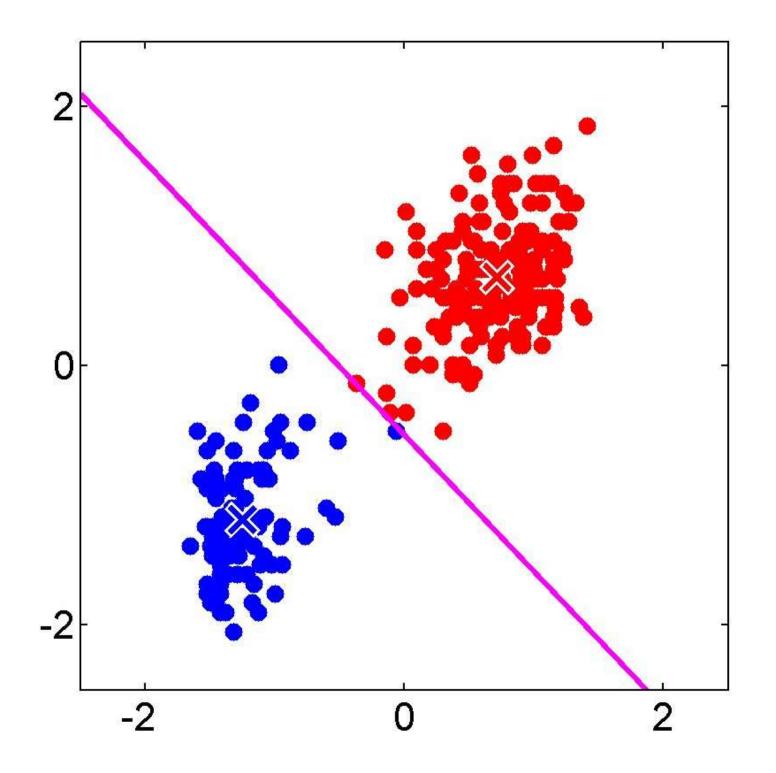


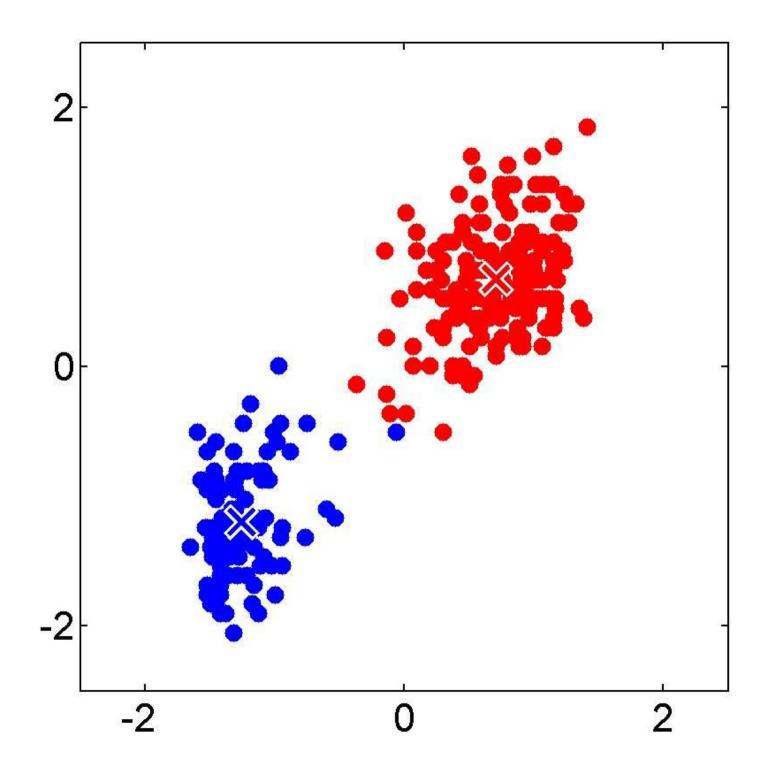












Assignment

$$r_{n,k} = \begin{cases} 1 \text{ if } k = \arg\min_{j} d\left(\vec{x}_{n}, \vec{\mu}_{j}\right) \\ 0 \text{ otherwise} \end{cases}$$

 \vec{x}_n : n - th training sample (vector) $\vec{\mu}_j$: mean of the j - th cluster $d(\vec{x}_n, \vec{\mu}_j)$: distance (your choice, e.g. L₂)

$$r_{n,k} = \begin{cases} 1 \text{ if } k = \arg\min_{j} d(\vec{x}_{n}, \vec{\mu}_{j}) \\ 0 \text{ otherwise} \end{cases}$$

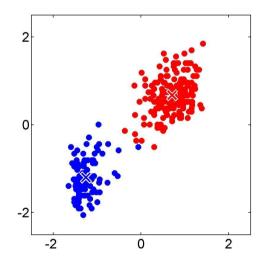
See black board

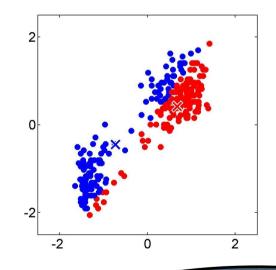
Update mean

$$\vec{\mu}_k = \frac{\sum_{n=1}^N r_{n,k} \vec{x}_n}{\sum_{n=1}^N r_{n,k}}$$

Loss Function: Distortion Measure

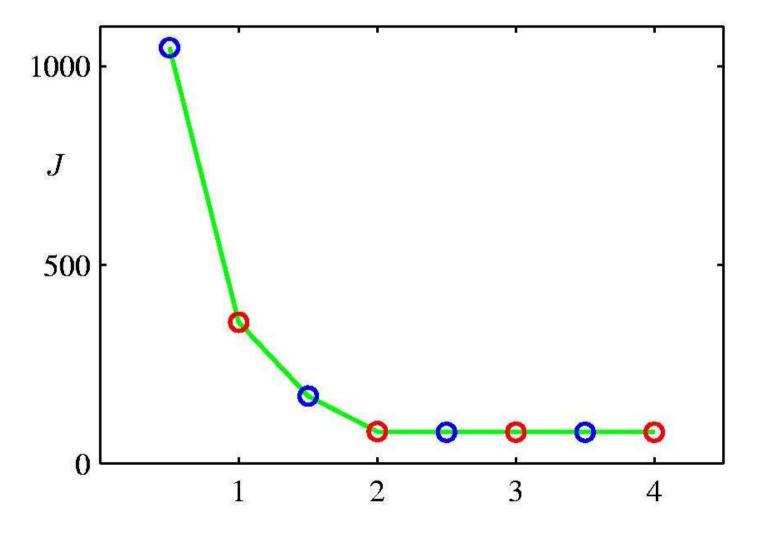
$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{n,k} d(x_n, \mu_k)$$





Which of the two has the smaller J?

Distortion Function after each iteration



How to initialize K-Means

Converges to local optimum

Outcome of clustering depends on initialization

Heuristic:

pick k vectors from training data (being furthest apart)

How to determine k

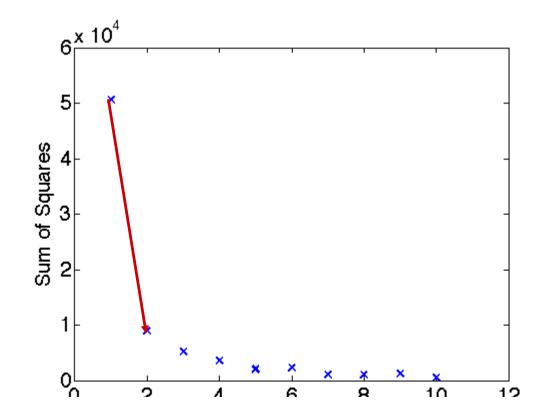
What about picking k such J becomes as small as possible? ?

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{n,k} d(x_{n}, \mu_{k})$$

How to determine K

For K=N the distortion J=0

Solution: find large jump

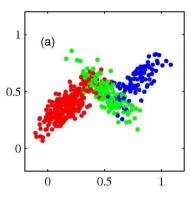


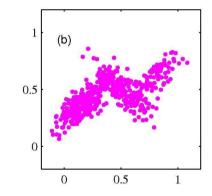
Other aspects of clustering

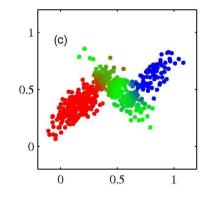
Soft clustering

No strict assignment to a cluster

Just probabilities







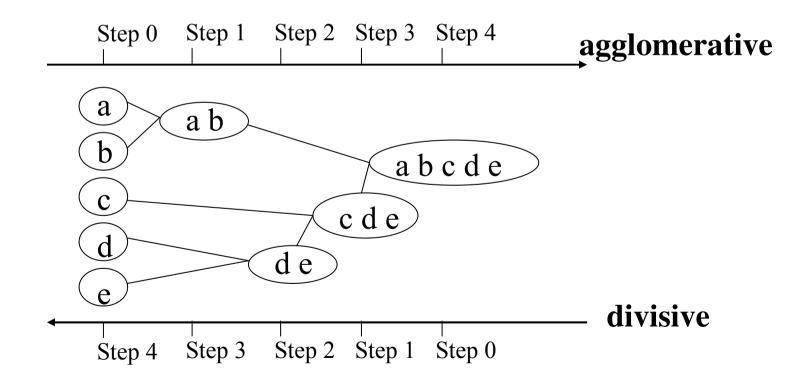
Original data Overlapping class regions

No class information

Soft clustering

Hierarchical Clustering

Organize cluster in a hierarchy



Text clustering

Derive features from documents

Frequency of words

TF-IDF of words

Stop wording?

Stemming?

Practical Example

At

http://research.microsoft.com/enus/um/people/cmbishop/prml/webdatasets/faithful.txt

You find some two dimensional data. Implement a k-means algorithm for two clusters using just the first (!) column

Homework

- 1. Apply your method only to the second column
- Generalize your algorithm to vector valued data and an arbitrary number of clusters. Apply it to the full data set with both columns
- 3. Suppose the first column has value $c_1(i)$ and the second $c_2(i)$. Is there a new $c(i) = a * c_1(i) + b * c_2(i)$ with suitable well picked a and b such that clustering based on c(i) is better than the one done on $c_1(i)$ or $c_2(i)$ alone.

Word Clustering using the Brown Algorithm

Cluster words together that have similar neighbours

Minimize perplexity on training test

The Brown Algorithm

st	start with some initial mapping $w \to g_w$					
	for each word w of the vocabulary do					
	for each class k do					
	tentatively exchange word w from class g_w to class k and update counts					
		compute perplexity for this tentative exchange				
exchange word w from class g_w to class k with minimum perplexity						
do) ur	ntil stopping criterion is met				

 $g_{w:}$ calls of word w

Example clustering

Cluster	Example members	
1	Groß, Rau, Müller, Zimmermann,	
	Frei, Becker, Möllemann, Schmidt	
2	Düsseldorf, Berlin, München, Köln,	
	Stuttgart, Hannover, Hamburg	
3	nahmen, macht, zeigt, gleichen, bringt,	
	biete, machte, sorgt, enthält	

Application in Named Entity Tagging

Training

Word	Class label	Тад
Düsseldorf	C2	City
is	Х	0
the	X	0
capital	Х	0
of	Х	0
NRW	X	0

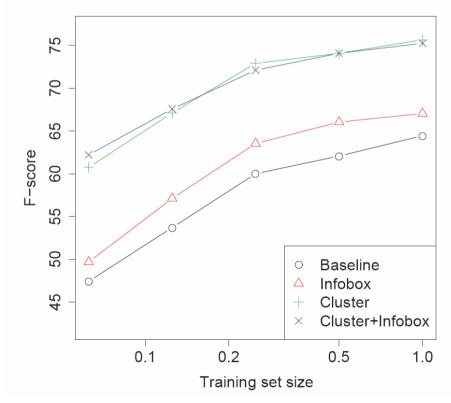
Application in Named Entity Tagging

Testing

Word	Class label	Тад
The	X	0
Hofbräuhaus	X	0
is	Х	0
in	X	0
Munich	C2	???

How to tag if Munich is not in the training data?

Use class labels as features in named entity tagging



F-score as a function of training data size

Clustering: finding similar items

Distance metrics

K-Means

Brown Algorithm