
Dietrich Klakow & Stefan Thater
FR 4.7 Allgemeine Linguistik (Computerlinguistik)
Universität des Saarlandes

Summer 2012

Computational Linguistics
Lecture 2 �– Finite State Automata

2

Some basic denitions

An alphabet is a nite set of symbols

A string over is a sequence of symbols from
 stands for the empty string

The length |w| is the number of symbols in w
* denotes this set of all strings over

A (formal) language is a subset of * for some
alphabet

3

Deterministic Finite Automata

M = K, , , s, F
K is a nite set of states

 is an input alphabet

is a transition function

s K is the start state

F K is the set of nal (accepting) states

Transition function
(q, a) = q�’

when M is in state q and reads input a, it goes into state q�’

4

Automata as Graphs

Nodes = states

Edges = transition function
an edge from state q to state q�’ labeled by a (q, a) = q�’

> marks the start state

Double circles = nal states

Automata as Graphs

M = K, , , s, F
K = {q0, q1}

= {a, b}

s = q0

F = {q0}

(q0, a) = q0

(q0, b) = q1

(q1, a) = q0

(q0, b) = q1

5

More denitions

A conguration is a pair q, w K *
q = the current state

w = the unread part of the string being processed

Yields in one step
q, w M q�’, w�’

i w = aw�’ for some a , w�’ * and (q, a) = q�’

Yields
*M is the reexive, transitive closure of M

The language accepted by a DFA M = K, , , s, F
L(M) = { w | s, w *M q, for some q F }

6

An Example

q0, ababa M q1, baba

M q2, aba

M q3, ba

M q2, a

M q3,

 ababa L(M)

7

An Example

q0, abaa M q1, baa

M q2, ba

M q3, a

M q1,

 abaa L(M)

8

Recognition Algorithm

function RECOGNIZE(DFA M, STRING input)
 index 0
 state start state of M
 while index < length(input) do
 state trans[state, input[index]]
 index index + 1
 end
 if state is a final state of M
 then return accept
 else return reject
end

9

Exercise: L(M) = ?

10

Nondeterministic Automata

Nondeterministic nite automata:
several symbols can be read at
once, or none at all

several possible next states

11

Nondeterministic Automata

M = K, , , s, F
K is a nite set of states

 is an input alphabet

 K × * × K is a nite transition relation

s K is the start state

F K is the set of nal (accepting) states

Transition relation K * K
q, w, q�’ = when the automaton is in state q and

reads input w, it can go into state q�’

Note: here we restrict ourself to NFA where |w| 1

12

An Example

M = K, , , s, F
K = {q0, q1, q2}

= {a, b}

s = q0

F = {q0}

= { q0, a, q1 , q1, b, q2 , q2, a, q0 , q2, , q0 }

13

Congurations

Congurations
are elements from K * (as before)

Yields in one step
q, w M q�’, w�’

i w = uw�’ for some u, w * and q, u, q�’

The language accepted by an NFA
L(M) = { w | s, w *M q, for some q F }

14

An Example

15

q0, babba
M q0, abba
M q0, bba
M q0, ba
M q1, a
M q3,

q0, babba
M q1, abba
M q3, bba
M q4, ba
M q4, a
M q4,

q0, babba
M q0, abba
M q0, bba
M q1, ba
M q2, a
M q4, a
M q4,

Recognition Algorithm

function RECOGNIZE(NFA M, STRING input)
 agenda = list of configurations, initially containing only
 the configuration (start state of M, input)
 while agenda is not empty do
 conf POP(agenda)
 if conf is an accepting configuration then
 return accept
 else
 for all conf�’ such that conf conf�’ do

 PUSH(agenda, conf�’)
 end
 end
 return reject
end

16

An Example

17

conf agenda
�– q0, babba
q0, babba q0, abba , q1, abba
q0, abba q0, bba , q1, abba
q0, bba q0, ba , q1, ba , q1, abba
q0, ba q0, a , q1, a , q1, ba , q1, abba
q0, a q0, , q1, a , q1, ba , q1, abba
q0, q1, a , q1, ba , q1, abba
q1, a q3, , q1, ba , q1, abba
q3, q1, ba , q1, abba
q1, ba q2, a , q1, abba
q2, a q4, a , q1, abba
q4, a q4, , q1, abba
q4, q1, abba

NFA = DFA (preliminary)

Theorem: for every NFA M = K, , , s, F there is an
equivalent DFA M�’ such that L(M) = L(M�’)

Let us rst consider the special case where for all
elements q, w, q�’ , w is a string of length 1

We construct the DFA M�’ = K�’, , �’, s�’, F�’ as follows:
K�’ = 2K

s�’ = {s}
(Q, a) = { k K | q, a, k for some q Q }

for all Q K
F�’ = { Q K | Q F }

18

-Closure

-Closure
E(q) = { k | q, * k, }

Examples:
E(q0) = { q0, q1, q2, q3 }

E(q1) = { q1, q2, q3 }

E(q2) = { q2 }

Note:
For all q, q E(q)

19

NFA = DFA

Theorem: for every NFA M = K, , , s, F there is an
equivalent DFA M�’ such that L(M) = L(M�’)

We construct the DFA M�’ = K�’, , �’, s�’, F�’ as follows:
K�’ = 2K

s�’ = E(s)
(Q, a) = { E(k) K | q, a, k for some q Q },

for all Q K
F�’ = { Q K | Q F }

20

NFA = DFA

Lemma: For any string w * and any states p, q K�’:
q, w *M p, i E(q), w *M P,

for some P containing p

Using this lemma, it is easy to show that L(M) = L(M�’)
w L(M)

i s, w *M f, , for some f F

i E(s), w *M�’ Q, , for some Q containing f

i E(s), w *M�’ Q, , for some Q F�’

i w L(M�’)

21

Subset construction algorithm

-closure(s)
returns the set of NFA states reachable from state s
using -transitions

-closure(T)
returns the set of NFA states reachable from some s in T
using -transition

move(T, a)
returns the set of NFA states to which there is transition
for input a from some state s T

22

Subset construction algorithm

function DFA(K, , , s, F)
 K�’ list that contains only -closure(s), unmarked
 while there is an unmarked state T in K�’ do
 mark T
 for each symbol a do
 U -closure(move(T, a))
 if U K�’ then
 add U as an unmarked state to K�’
 [T, a] U
 end
 end
 return <the corresponding DFA>
end

23

Literature

Jurafsky and Martin (2009). Chapter 2.

Lewis and Papadimitriou (1981). Elements of the theroy
of computation. Chapter 2.

24

Exercise 1

Apply (using pen and paper) the recognition algorithm
on slide 16 for the nondeterministic automaton shown
below to the input string �“abaaba�”

There is a problem with this algorithm. Which one? How
can the algorithm be improved?

25

Exercise 2

Construct a deterministic automaton for the
nondeterministic automaton shown below, using the
subset construction algorithm on slide 23.

26

Exercise 3

Implement the recognition algorithm for NFA on slide 16.

Your submission should use the automaton shown below
and the following inputs as test case.

ab L(M)

aba L(M)

abaab L(M)

abba L(M)

aabab L(M)

More test cases are
welcome!

27

Exercise 4

Implement the subset construction algorithm on
slide 23.

Your submission should use the automaton show below
as a test case.

28

Exercises �– Remarks

Submit the source code by email to me (stth@...)

The source code should contain a comment that tells
how the code can be used.

29

