Computational Linguistics Lecture 2 – Finite State Automata

Dietrich Klakow & Stefan Thater FR 4.7 Allgemeine Linguistik (Computerlinguistik) Universität des Saarlandes

Summer 2012

Some basic definitions

- An alphabet Σ is a finite set of symbols
- A string over Σ is a sequence of symbols from Σ
 ε stands for the empty string
- The length |w| is the number of symbols in w
- Σ* denotes this set of all strings over Σ
- A (formal) language is a subset of Σ^{*} for some alphabet Σ

2

More definitions

- A configuration is a pair $(q, w) \in K \times \Sigma^*$
 - q = the current state
 - w = the unread part of the string being processed
- Yields in one step
 - ⟨q, w⟩ ⊢_M ⟨q', w'⟩
 - iff w = aw' for some $a \in \Sigma$, $w' \in \Sigma^*$ and $\delta(q, a) = q'$
- Yields
 - \vdash_{M}^{*} is the reflexive, transitive closure of \vdash_{M}
- The language accepted by a DFA M = $\langle K, \Sigma, \delta, s, F \rangle$
 - $L(M) = \{ w \mid (s, w) \vdash^*_M (q, \epsilon) \text{ for some } q \in F \}$

Recognition Algorithm function RECOGNIZE(DFA M, STRING input) index + 0 state + start state of M while index < length(input) do state + trans[state, input[index]] index + index + 1 end if state is a final state of M then return accept else return reject end</pre>

9

Nondeterministic Automata

- Nondeterministic finite automata:
 - several symbols can be read at once, or none at all
 - several possible next states

Nondeterministic Automata

- M = (K, Σ, Δ, s, F)
 - K is a finite set of states
 - Σ is an input alphabet
 - $\Delta \subseteq K \times \Sigma^* \times K$ is a finite transition relation
 - s \in K is the start state
 - $F \subseteq K$ is the set of final (accepting) states
- Transition relation $\Delta \subseteq K \times \Sigma^* \times K$
 - ⟨q, w, q'⟩ ∈ Δ = when the automaton is in state q and reads input w, it can go into state q'
 - Note: here we restrict ourself to NFA where $|w| \le 1$

Recognition Algorithm function RECOGNIZE(NFA M, STRING input) agenda = list of configurations, initially containing only the configuration (start state of M, input) while agenda is not empty do conf ← POP(agenda) if conf is an accepting configuration then return accept else for all conf' such that conf ⊢ conf' do PUSH(agenda, conf') end end return reject end 16

	$\rightarrow \phi \phi$	$\rightarrow q_2$
conf	agenda q ₀ a	e
-	(q ₀ , babba)	+
(q₀, babba)	(q₀, abba), (q₁, abba) d	≁©⊋
(q₀, abba)	(q ₀ , bba), (q ₁ , abba) $\qquad \qquad \qquad$	44
(q₀, bba)	(q₀, ba), (q1, ba) , (q1, abba)	
(q ₀ , ba)	(q₀, a), (q₁, a) , (q₁, ba), (q₁, abba)	
(q₀, a)	(q₀, ε) , (q₁, a), (q₁, ba), (q₁, abba)	
(q₀, ε)	(q1, a), (q1, ba), (q1, abba)	
(q1, a)	(q₃, ε) , (q₁, ba), (q₁, abba)	
(q ₃ , ε)	(q1, ba), (q1, abba)	
(q1, ba)	(q₂, a) , (q ₁ , abba)	
(q ₂ , a)	(q₄, a) , (q₁, abba)	
(q4, a)	(q₄, ε) , (q1, abba)	
(α4. ε)	(g ₁ , abba)	

• $F' = \{ Q \subseteq K \mid Q \cap F \neq \emptyset \}$

ε-Closure

- ε-Closure
 - $E(q) = \{ k \mid \langle q, \epsilon \rangle \vdash^* \langle k, \epsilon \rangle \}$
- Examples:
 - $E(q_0) = \{ q_0, q_1, q_2, q_3 \}$
 - $E(q_1) = \{ q_1, q_2, q_3 \}$
 - E(q₂) = { q₂ }
- Note:
 - For all q, $q \in E(q)$

NFA = DFA

- Theorem: for every NFA M = (K, Σ, Δ, s, F) there is an equivalent DFA M' such that L(M) = L(M')
- We construct the DFA $M' = \langle K', \Sigma, \delta', s', F' \rangle$ as follows:
 - K' = 2^K
 - s' = E(s)
 - $\delta(Q, a) = \cup \{ E(k) \in K \mid \langle q, a, k \rangle \in \Delta \text{ for some } q \in Q \},$
 - for all $Q \subseteq K$
 - $F' = \{ Q \subseteq K \mid Q \cap F \neq \emptyset \}$

20

NFA = DFA

- **Lemma:** For any string $w \in \Sigma^*$ and any states p, $q \in K'$:
 - (q, w) ⊢^{*}_M ⟨p, ε⟩ iff ⟨E(q), w) ⊢^{*}_M ⟨P, ε⟩ for some P containing p
- Using this lemma, it is easy to show that L(M) = L(M')
 - $w \in L(M)$
 - iff $(s, w) \vdash^*_{M} (f, \epsilon)$, for some $f \in F$
 - iff $(E(s), w) \vdash^{*}_{M'} (Q, \varepsilon)$, for some Q containing f
 - iff $(E(s), w) \vdash^{*}_{M'} (Q, \epsilon)$, for some $Q \in F'$
 - iff $w \in L(M')$

Subset construction algorithm

- ε-closure(s) returns the set of NFA states reachable from state s using ∈-transitions
- ε-closure(T) returns the set of NFA states reachable from some s in T using ∈-transition
- move(T, a) returns the set of NFA states to which there is transition for input $a \in \Sigma$ from some state $s \in T$

22

Subset construction algorithm function DFA(K, Σ, Δ, s, F) K' + list that contains only ε-closure(s), unmarked while there is an unmarked state T in K' do mark T for each symbol a ∈ Σ do U + ε-closure(move(T, a)) if U ∉ K' then add U as an unmarked state to K' δ[T, a] + U end end return <the corresponding DFA> end

23

Literature Jurafsky and Martin (2009). Chapter 2. Lewis and Papadimitriou (1981). Elements of the theroy of computation. Chapter 2.

Exercise 1

- Apply (using pen and paper) the recognition algorithm on slide 16 for the nondeterministic automaton shown below to the input string "abaaba"
- There is a problem with this algorithm. Which one? How can the algorithm be improved?

Exercise 3

- Implement the recognition algorithm for NFA on slide 16.
- Your submission should use the automaton shown below and the following inputs as test case.
 - ab ∈ L(M)
 - aba $\in L(M)$
 - abaab ∈ L(M)
 - abba ∉ L(M)
 - aabab ∉ L(M)
 - More test cases are welcome!

Exercise 4 Implement the subset construction algorithm on slide 23. Your submission should use the automaton show below as a test case.

28

Exercises - Remarks

- Submit the source code by email to me (stth@...)
- The source code should contain a comment that tells how the code can be used.

