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Visual laughter synthesis is a challenging task wes only rarely explored and empirical investigas are scarce.
For the purpose of building a virtual agent abléategh naturally we exploit different animation he@ues such as
a procedural animation or based on motion captodevee apply them to visual laughter synthesis.h&t mmoment
we focus on three approaches: procedural animatised on manual annotation of facial behavior; emotiapture
driven animation and animation generated from aatanfacial movements detection. For the purposthisfstudy
we use the Greta agent (Niewiadomski et al., 2@4a) can be driven by both high-level anatomicatigpired
facial behavior description based on the FaciaiohcCoding System (FACS; Ekman, et al., 1978) av-level
facial animation parameterization (FAPS) that ga of MPEG-4 standard (Ostermann, 2002) for fei@mation.
We also use two video corpora: AVLC database (Urletial., 2011) containing mocap, video and audia @f 24
subjects showing spontaneous amusement laugh se=pamd Queen's University Belfast's dataset ofessax
interaction dyads during the watching of funny stim\We present all approaches in detail.

Manual annotation of action units. FACS is a comprehensive anatomically based systammeasuring all
visually discernible facial movement. It descrildisdistinguishable facial activity on the basisddf unique Action
Units (AUs), as well as several categories for haad eye positions/movements and miscellaneousractUsing
FACS and viewing digital-recorded facial behavibframe rate and in slow motion, certified FACS emxlare able
to distinguish and code all visually discernibleiéh expressions. Utilizing this technique, a sttecof twenty pre-
recorded, laboratory stimulated, laughter eventsewmded. These codes were then used to modelattial f
behavior on the Greta agent which is able to display configuration of AUs. For 3 virtual charasteingle AUs
were defined and validated by certified FACS coderder the constraints of the technology. A BehaMarkup
Language (BML) implemented in Greta permits thetnof each AU of the agent (its duration and insigy)
independently. The animation of any AU is linedrterpolated according to Attack-Decay-Sustain-Bstemodel
(Ekman, et al., 1978). Next, the symbolic intensigyues are converted to low-level facial animatmarameters
(FAP) which, finally, are used to deform a meshh# virtual model. We also developed a tool thabratically
converts manual annotation files created with Nsl@bserver XT, a commercial tool for manual vidapeotation,
to BML. Consequently any file containing manual etation of AUs can be easily displayed with thet&gent.
Animation from automatic facial movements detection. The Greta agent uses facial animation paramet&Rs)F
to realize low-level facial behavior. FAPs reprasemmvements of MPEG-4 facial points compared to'tleeitral’
face. In order to estimate FAPs of natural facigiressions, we made use of an open-source fadérgatol —
FaceTracker (Saragih et al., 2010) — to track fdarmark localizations. It uses a Constraineddlddodel (CLM)
fitting approach that includes a Regularized Landimdean-Shift (RLMS) optimization strategy. It cdetect 66
facial landmark coordinates within real-time latgdepending on the system's configuration.

Facial geometry differs from one human to anothe. dherefore, it is difficult to estimate FAPs hatit neutral
face calibration. To compute FAPS from facial larzaks, a neutral face model is created with the bEFD neutral
faces of different persons. With the help of thisdal, FAPs are estimated as the distance betwe&l fandmarks
and neutral face landmarks. In case of user-speE#iP estimation in a real-time scenario, the rautice is
estimated from a few seconds of video by expliailguesting the user to hold the face still. Howetlee better
estimation of FAPs requires manual intervention tiweaking weights to map landmarks and FAPs, wiich
downside of this methodology.

The landmark coordinates produced by the FaceTrarkeobserved as noisy due to the discontinuétiesoutliers
in each facial point localization. Especially, ttealized behavior is unnatural on a virtual modeew we re-target
the observed behavior onto the Greta agent. To #nthe face-tracking parameters, a temporal regnestrategy
has been applied on individual landmarks by fitterd order polynomials using a sliding window, wénéne sliding
window size and its shifting rate are 0.67 secarts0.33 seconds respectively.

Animation from motion capture data. AVLC corpus (Urbain et al., 2011) contains motiapture data of laugh
episodes that have to be retargeted to the vinealel. The main problem in these kinds of approaduoasists in
finding appropriate mappings for each participaritise geometry and different virtual models. Mamnyseng



solutions are typically linear (e.g., methods basedlend shape mapping) and do not take into axtadynamical
aspects of the facial motion itself. Recently, Matt Zeiler and colleagues (2011) proposed to apahiants of
Temporal Restricted Boltzmann Machines (TRBM) te facial retargeting problem. TRBM are a familynoddels
that permit tractable inference and allows compdidastructures to be extracted from time seriea. ddtese models
can encode a complex nonlinear mapping from thédomoadf one individual to another, which capturesida
geometry and dynamics of both source and targehdroriginal application (Zeiler et al., 2011) skemodels were
trained on a dataset of facial motion capture ddHtawo subjects, asked to perform a set of isoldtadal
movements based on FACS. The first subject had 3drRers (939 dimensions per frame) and the secobjgctu
had 332 markers (996 dimensions per frame). Infegdyg there was no correspondence between mastsr Shey
were able to retarget the motion with a RMS erifa2 &6. However, they only evaluated their resutisstow facial
movements.

We use TRBM models for our project, which involvesargeting from an individual to a virtual chaeactin our
case, we take the input as the AVLC mocap datacaplut the corresponding facial animation paransetEAP)
values. This task has two interesting aspectst, Rine model performance was previously evaluately on
retargeting an isolated slow expression whereagasg involves transitions from laughter to sonteioexpression
(smile or neutral) as well as very fast moveme&esond, we use less markers compared to the dragpéication.
Our mocap data had only 27 markers on face, whickeiy sparse.

So far we used the AVLC data of one participant.aAsaining set we used two sequences, one of ”2blek and
another one of 150 frames. Target data (i.e., facianation parameters) for this training set wasagated using
manual retargeting procedures explained in Urbaimle(2011). Both the input and output data vectaere
reduced to 32 dimensions by retaining only thest f82 principal components. Since this model tyipid@arns
much better on scaled data (around [-1,1]), the& des then normalized to have zero mean and stglate
average standard deviation of all the elementfiénttaining set. Having trained the model, we Lus¢d generate
facial animation parameters values for 2 minuteg lmocap data (2500 frames coming from the samécipant).
The first results are promising but more variapilit the training set is needed to retarget mosezipely different
type of movements.

Conclusion. These three approaches offer different degreekexibflity and control over the expression, diffete
levels of realism and precision of the movements. &pect, for instance, that the mocap-based aisimahould
be richer in movements and consequently it may dregived as more realistic. Also using mocap dahtalsg
permit to maintain the temporal and dynamic charstics of the original laugh. On the other hamdireation
generated with this method is difficult to controbnually (e.g., its duration, intensity, commuriiatfunction).
Moreover the mocap procedure is invasive, recowasd-time consuming. On the other hand, descriaimmation
by action units allows one to control preciselyaaimation and its meaning (e.g., by adding or rengpAU6, a
marker of the Duchenne smile) but has all the weskes of procedural approaches to facial animafibe.
animation is poor in details and the dynamics efiovements is very simplistic. Finally, a solutimesed on the
automatic facial action detection combines advagagf both solutions: it should be sufficientlytrim the details
(it depends highly on the quality of the face texcipplied). At the same time one can manuallyroband edit the
final animation by adding or removing some faciati@ns. Still it requires that recordings be takercontrolled
conditions (e.g., good lighting).

Future works will consist of a set of perceptivedsés that we want to develop in order to checkgiality of the
animations and compare our 3 methods. For thisgserpve use just one set of laugh episodes andyevilérate
animations with these 3 different approaches. Tdwofs considered in the evaluation will be belENty and
naturalness of the animations.
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