
Combining the Practical Syllogism and Planning in Dialogue

Günther Görz, Alexander Huber, Bernd Ludwig, Peter Reiss
University of Erlangen-Nuremberg

Computer Science Institute

Abstract

We present a dialogue model which re-
lates discourse relations and intentions
by reasoning about pragmatic capabil-
ities of dialogue particpants. For that
purpose, planning approaches for dis-
course and application domain are em-
ployed. In this way, a computationally
tractable version of the pratical syllo-
gism is devised.

1 Rational Dialogues

Our goal is to build dialogue systems for rational
interaction. Users can interact with the system in
a given (ideally open) domain by conducting spo-
ken dialogues. In principle, it should be possible
to augment them by other forms of multi-modal
interaction like gestures or the selection of items
from a menu on a screen. Interactions are called
“rational” because we want to apply rationality
principles (at the knowledge representation level)
to optimally select appropriate communicative ac-
tions. We assume that the satisfaction of user goals
within the thematic framework of a particular ap-
plication domain is to be achieved with the help
of a dialogue system proper in cooperation with a
technical application which we also call the “do-
main problem solver”. Such a technical applica-
tion can be an information or reservation system,
a system for controlling certain devices, etc.

For dialogue modelling, we will follow a plan-
based approach which has its roots in natural
language processing and Artificial Intelligence.

It provides the means to conduct task- or goal-
oriented dialogues which are focussed on accom-
plishing concrete tasks as mentioned in the intro-
duction. We claim that only a general planning
approach enables cooperative response behaviour
(pragmatic adequateness, overanswering) and the
ability for negotiation. For the reasoning part, i.e.
knowledge representation and inference for the in-
terpretation of dialogue as well as for planning
to satisfy user goals in the application domain,
we insist on a clear commitment to a computa-
tional logic framework, in particular description
logics. Of course, humans act incoherently and
even inconsistently, and common sense reasoning
can only to a certain extent be understood in terms
of logic, but we are convinced that a coherent and
consistent rational reconstruction is the best we
can do about it. Such a constructive perspective
has the advantage of enabling us to begin with
a well understood framework for knowledge rep-
resentation and reasoning upon which we can at-
tempt to build rule systems for still idealized, but
more realistic patterns of argumentation in specific
domains. We believe that there is a potential to
succeed in a variety of prevailingly instrumental-
ized contexts as it is the case with technical appli-
cations or in forensic argumentation.

Taking these claims serious, obviously a vari-
ety of complex issues must be addressed within
the framework of our dialogue system, as, e.g.,
intention recognition, cooperativeness, grounding,
or sharing plans – to name just a few important
ones. For that, we refer to other publications of
our group, e.g., (Görz et al., 2002; Bücher et al.,



2002; Ludwig et al., 2002). In this paper, we are
adressing only one specific problem:

2 Choices in Rational Dialogues

In a series of papers, Asher and Lascarides intro-
duced Segmented Discourse Representation The-
ory (SDRT) as an extension to Kamp’s DRT and
used it to model dialogue by combining compo-
sitional semantics, discourse structure and infor-
mation about the participant’s intentional states.
The reason for their approach is to overcome in-
ferential problems encountered in AI approaches
to plan recognition in dialogue systems (Asher and
Lascarides, 1997). A discourse is represented in
the form of a SDRS (Segmented Discourse Repre-
sentation Structure) which is a recursive structure
of DRSs, i.e. semantic representations of linguis-
tic expressions on the clause level, connected by
rhetorical relations. Examples for such relations
are explanation, contrast, or continuation. For dis-
course analysis, the authors propose to construct
two different SDRSs, one for each discourse par-
ticipant, in order to take their different cognitive
states – we prefer to talk about epistemic states
– into account. As a formal means for reasoning
from the epistemic states of participants to what
they say and vice versa, Asher and Lascarides in-
troduce a version of Aristotle’s Practical Syllo-
gism: it “states that normally, people intend to
do things that they believe help them achieve their
goals”1. Under the rationality assumption for dia-
logues we propose for the multi-agent framework
and the applications we work on within it, we will
use a tighter, i.e. monotonic version of the Practi-
cal Syllogism by dropping “normally”: If (a) par-
ticipant B wants ψ and believes ¬ψ, and (b) B
believes he can infer ψ from his knowledge base
augmented by φ, and moreover φ isB’s choice for
achieving ψ, then (c) B intends φ.

There are two reasons for tightening up the
Practical Syllogism into a monotonic version. The
first is a technical, albeit quite important one: As
already mentioned, in order to achieve a running
system we committed ourselves to a particular
computational logic framework, description log-
ics, where the decidability – and furthermore an

1(Asher and Lascarides, 1997), p. 16 of the preprint ver-
sion

efficient implementation – of the inference prob-
lem is the foremost issue. Non-monotonicity in
general would mean to lose decidability. The sec-
ond reason is that in any specific application sit-
uation in fact the choice of an appropriate action
is monotonic – either it is available or not. If not,
a normality assumption is of little help. This de-
cision can be modelled by a Reiter-style default
rule, but it is a priori with respect to the applica-
tion timepoint of the Practical Syllogism: Either
counterevidence to the assumption that the chosen
action is applicable exists in the actual situation,
or it doesn’t. So we have two distinct phases: First
we have to check for counterevidence; if it exists,
the choice cannot be executed and the Practical
Syllogism is not applicable. If there is no coun-
terevidence, we perform a monotonic derivation.
Technically, the first step is represented in Ab-
dallah’s FIL calculus (Abdallah, 1995); it allows
to express a certain situation description (model)
with alternative model extensions where within
each extended model we can infer monotonically.
The monotonic version of Practical Syllogism now
reads as follows:

(a) (WB(ψ) ∧ BB(¬ψ) ∧

(b) BB((φ→ ψ) ∧ choiceB(φ, ψ))

(c) → IB(φ)

With the assumptions of Grice’s maxims of coop-
eration and sincerity, the Practical Syllogism plays
an essential part in the reasoning behind how re-
sponses to questions are interpreted in dialogue.

In Asher’s and Lascarides’ original version the
choice operator is left open – there is just an ex-
istence assumption. To fill this gap, we propose
a constructive approach: What we will argue for
in the following is that we need to recur to plan-
ning in the application domain to provide a pre-
cise meaning for the choice operator in the rule
above. The operationalization of the choice opera-
tor in terms of planning will exhibit the respective
options in the actual search space, which applies to
discourse as well as to domain operations, and fur-
thermore provide an effective decision procedure.
Dealing with both kinds of operations in a uniform
way depends on how they are modelled in our sys-
tem: in the underlying conceptual hierarchy both
are represented formally in the same way.



Without any doubt, plans are an important
source about discourse structure, as has been
demonstrated by Grosz’ and Sidner’s studies as
well as other AI work on dialogue (cf. also (Bri-
etzmann and Görz, 1982)). We agree with Asher
and Lascarides in their criticism that there is no
direct way to structure dialogues satisfactorily by
a global planning approach, because there isn’t a
one to one mapping between dialogue and plan
structures. Our approach2 as well as theirs is
built upon the conviction that discourse interpreta-
tion requires intention recognition, and therefore
a semantic-based theory of discourse structure is
needed to assess when exploiting plans is appro-
priate. We have to distinguish between a domain
level plan dealing with actions and a discourse
level plan dealing with speech acts3. What we
need is to predict automatically when the inten-
tional structure of the discourse is isomorphic to
the commonsense plan, and when it isn’t; this re-
quires a formal representation of semantics. Oth-
erwise, because there is no strict isomorphism be-
tween both structures in general, wrong predic-
tions about possible antecedents for anaphors in
utterances that continue the dialogue may result.

The thesis proposed in this paper is that the
key to a solution to this prediction problem lies
in grounding the choice operator in the semantics
of the resp. application domain. With respect to
discourse structure, the role of action planning on
the domain level is not to provide a global dis-
course segmentation, but rather to assign a pre-
cise meaning in terms of domain semantics to the
choice operator in each situation where it is ap-
plied. The intended (perlocutionary) effect of a
speech act constitutes a planning goal in the do-
main; it is determined further by the options to act
in a particular cooperation context, e.g. by con-
junctive subgoals. Whether there exists a prece-
dence relation between subgoals in the conjunc-
tive case can immediately be taken from the task
plan in which possible dependencies are repre-
sented based on domain knowledge, resulting in a
temporal order for the execution of subtasks. This
matches well with Asher’s and Lascarides’ obser-

2as described e.g. in (Görz et al., 2002; Bücher et al.,
2002; Ludwig et al., 2002)

3(Asher and Lascarides, 1997) p. 5 of the preprint version

vation that a transition to the epistemic level, i.e.
from structural relations between actions in com-
monsense plans to the level of knowledge, can-
not provide a general solution, because the order
in which facts are known by the dialogue partici-
pants usually doesn’t matter. Only on the level of
domain knowledge it can be decided whether de-
pendencies between subgoals exist and in which
order the corresponding tasks have to be executed.

In the following sections we will point out how
this claim can be implemented in the context of
an example domain that can be formalized with
(classical) planning languages – in our case PDDL
(Ghallab et al., 1998). PDDL is decidable and
therefore computationally tractable, and there are
several efficient planners implemented whose out-
put – as discussed below – delivers the pragmatic
options which are subject to the choice operator.

In our view, discourse segmentation is a con-
sequence from planning actions in a setup where
partners may exchange information about com-
mon goals. From a perspective complementing
Sadek’s work (Bretier and Sadek, 1996) on why
partners have common goals at all, we elaborate
an effective model of dialogues that explains the
analysis and generation side of rational dialogues
in human-computer interaction. In an application
domain, there are several sources for a choice to
be made by a dialogue participant:

• The derivation of a common goal from a nat-
ural language contribution to a dialogue.

• There may be more than one unique plan to
achieve the common goal.

• It is possible as well that no plan can be
found. In this case, choice is between rel-
evant alternative contexts (cf. (Sperber and
Wilson, 1995)) that can be computed effec-
tively taking certain decision criteria into ac-
count (e.g. the usefulness of a alternative with
respect to the initial intention of the speaker).

• During execution of a plan, the dialogue par-
ticipant may run into trouble when assump-
tions that are vital for the plan to be carried
out completely are violated.

Throughout the remainder of this paper, we try to
illustrate our approach with the help of examples



taken from a prototypical domain we have imple-
mented: we use a model train to implement co-
operative user interfaces to complex technical sys-
tems. In our scenario, a coffee machine is con-
trolled by a PC as well as a robot that can load and
unload cups from railway waggons and position
it underneath the spout of the coffee machine that
fills them with coffee. The cups are transported to
destinations specified by the user.

3 Handling Underspecification in User
Utterances

Our goal is to use a dialogue system for spoken
language to control technical application systems.
Let us consider the scenario described above. In
very simple cases, of course there is no need for
planning at all – the choice of the appropriate ac-
tion is obvious. E.g., if only one switch exists, and
this switch has only a set of predefinded states, the
utterance “set the switch to position 1” (where ’po-
sition 1’ is one of the defined states) has only one
sensible corresponding system command.

But usually, the environment is more complex
– there exists more than one switch and railtrack,
several trains are moving with different speeds,
etc. Now, the same command may intend differ-
ent actions at the application level, depending on
(a) the current state the application system is in,
(b) possible user preferences, and (c) the fact that
other requests may still be in the queue for pro-
cessing. So, there is a 1:n-mapping between an
utterance and possible commands to the technical
application system, which is a kind of incomplete
knowledge for the dialogue manager.

Because the user is free to let his descriptions
for domain operations underspecified, utterances
like “faster please” are possible. Here, not only the
device is not specified (it could be one of several
trains or even the robot), but also the degree of
speed. The challenge for the dialogue system is to
react in a sensible and cooperative manner. One
way to resolve the underspecified items would be
to initiate a clarification dialogue. But the system
should always be as cooperative as possible, and
before further inquiry, user preferences should be
used as an additional source of knowledge, as well
as the current state of the application environment.
Taking these sources of knowledge into account,

it is possible to determine a precise command for
broad range of utterances4.

We believe that planning can be used to deter-
mine the user’s intentions and to choose the sys-
tem action he probably wanted, taking into ac-
count the application state and his preferences.

Every plan has an initial state, a goal state and a
set of possible actions. These actions are defined
as plan operators, where each operator has its re-
quired initial state and one or more effects. When
trying to find a plan, the initial states of the op-
erators are matched with a representation of the
current state of the application and of the current
user with his (general) preferences. The intended
application state is encoded in the user’s utterance,
but depends also on his preferences.

So, in the domain model, plan operators for dif-
ferent application states have to be defined. The
set of (initial and goal) states is limited by the ca-
pabilities of the technical system that is addressed.
The user preferences are encoded in the definitions
of the plan operators, too. So it is clear that only
underspecifications that are (directly or indirectly)
handeled in the definitions of the plan operators
can be filled. One simple example for encoding
user preferences in a plan operator would be:

(:action faster
:parameters (?engine1 ?user)
:precondition (not (maxspeed engine1))
:effect (and

(when (likesFast ?user)
(maxspeed ?engine1))

(when (likesSlow ?user)
(mediumspeed ?engine1))))

Now, the command “faster please” leads to an
application state where the train is running with
maximum speed, if the user likes it fast. If the
user’s preference wrt. speed is “slow”, the train
will only move with medium speed. In this exam-
ple, the application status is not regarded. But the
operator definition can be expanded. For example,
the current speed can be increased by two steps
if the user likes it fast and by one step otherwise.
The speed cannot be increased, if the train already
runs at maximum speed.

4But there will still be cases where a set of actions of the
technical system corresponds to one particular utterance. In
those cases, it depends on the configuration of the dialogue
system, wheter a clarification dialogue is initiated or e.g. a
randomly choosed action is performed.



4 How is the Discourse Related to the
Real World Situation?

The type of discourse situations we are consid-
ering here in a multi-agent framework is charac-
terized by the following prominent factors: First,
dialogue participants behave according to rational
principles of conversation and action. Second, di-
alogues follow a certain rationale which in turn is
determined by the intention to elaborate and ex-
ecute joint plans (cf. (Chu-Carroll and Carberry,
1995; Chu-Carroll and Carberry, 1996; Carberry
and Lambert, 1999)). As a consequence, dia-
logues are considered to be a means of exchang-
ing information and requiring other dialogue par-
ticipants to execute certain tasks defined in the ap-
plication domain.

In the light of these guidelines of dialogue ana-
lysis (and generation), choices in a dialogue are
determined by options while planning and execut-
ing plans for joint tasks. Furthermore, these op-
tions are constrained by the capabilities of a dia-
logue participant to act in his or her environment.

Options can appear on two levels in rationale di-
alogues: first, when reasoning about the effects of
a speech act with respect to a model of interaction,
and, second, when reasoning about the content of
a speech act. Reasoning about content has many
aspects: syntax, semantics and pragmatics not the
only but the most prominent ones. The focus of
this paper is on pragmatics and its effects on rea-
soning about the state of interaction.

(Carberry, 1990; Lambert, 1993; Lesh et al.,
1999), among others, have pointed out that reason-
ing about plans is a key to understand dialogues;
nevertheless, their work has – to the best knowl-
edge of the authors – never been integrated with
the work on planning problem solvers in AI in
order to achieve an implementation of their dis-
course models that can reason efficiently and can
be configured in a simple fashion to new appli-
cations. This paper tries to gap the brigde be-
tween linguistic theory and theoretical and practi-
cal work on planning by exploiting the expressiv-
ity of PDDL for the definition of application (and
discourse) domains. In order to make planning ap-
plicable to dialogue processing, the following is-
sues have to be addressed:

Planning must be bidirectional. The problem
here is that PDDL operators must be applied for
plan recognition as well as for plan generation.
As we model collaboration in the sense of (Chu-
Carroll and Carberry, 1996), application domain
operators must be defined for each perspective in
the modelled collaboration. In the applications we
consider, normally user and system play comple-
mentary role: the user wants the system to per-
form some task and the systems tries to find and
execute a plan that fulfils the task. As the task is
to be defined in terms of a planning goal, natural
language processing must construct it from utter-
ances. To do that, we determine whether the se-
mantic representation of the utterance talks about
objects, states or actions. In the case of states
and objects, a plan has to be computed if the in-
formation given in the utterance is not entailed in
the current application situation; in the case of ac-
tions, we have to compute their possible effects
by applying plan operators in a forward fashion.
Of course, in order to avoid infinite recursion this
process has to stop after a finite (small) number
of iterations and therefore limits the system’s ca-
pabilities to foresee the consequences implied by
the user utterance. By planning in a forward direc-
tion, the system tries to get an imagination of what
the user wants to happen. Ambiguities arise when
the applied operators have conditional effects. In
such a case, a decision procedure has to be applied
that tries to get a good guess of what continuation
would have the most positive and less risky effects
on the user’s intentions.

Maxims of conversation in the sense of (Grice,
1969) control planning. The need for a decision
procedure is a consequence of the system to follow
these general principles that of conversation. In
our current implementation, there is no reasoning
about these principles; therefore, the decision pro-
cedure always tries to fulfill user requests as fast
as possible. In the worst case ambiguities cannot
be resolved, and clarification is requested from the
user. Otherwise, the completion of the task would
have to be cancelled.

Planning in dialogues must be interactive. This
is also due to the fact that planning is always in-
terleaved with plan execution and there is no way
to guarantee that each action in a plan can be ex-



ecuted as expected. Differences between planned
and observed states motivate the need for replan-
ning in order to fulfill obligations to satisfy user
requests. In this way, handling conflicts can be re-
duced to the problem of controlling planning that
was discussed above.

5 Examples for Computing Choice

The behaviour of our system, as it has been de-
scribed in general terms up to now, is discussed in
several examples showing when options come up
and how they are handled.

In our example domain, for the sake of an in-
tuitive example, we consider different reactions of
the hearer to the speaker requesting “Please bring
me a cup of coffee!”

In the first case, the setup is as follows: The
robot – in station C – has one cup stored, an en-
gine is positioned in station B, a waggon at a sid-
ing, whereas the coffee machine is in station C.
Now, the speaker’s request has to be translated into
a planning goal. Obviously, the utterance is un-
derspecified with respect to the destination. Here,
two levels of choice have to be considered. On the
content level, there are several options for desti-
nations (all stations in our case); on the level of
controlling the execution of a joint plan, there is a
choice between deciding autonomously for an op-
tion, or to clarify this issue in interaction with the
other dialogue participant:

• You are in station A. I will bring the coffee to
station A.

• Where do you want the coffee to be delivered?
Is station A ok?

As one can observe immediately, there are numer-
ous options for speech acts and text generation
when the need for clarification is verbalized.

(:init (at engine1 stationB)
(at waggon1 siding)
(cup-state cup1 empty)
(stored-on cup1 stack1)
(coffee-machine-state cm1 off)
(at cm1 stationC)
(at cup1 stationC))

(:goal (at cup1 stationA))

The presentation of the computed options
are intended to show that the major issue to

be addressed is underspecification, not non-
monotonicity. As far as discourse planning is con-
cerned, our approach is to find (disjunctive) al-
ternatives on the basis of observed facts instead
of finding contradictions to default assumptions.
This observation leads to our claim that a mono-
tonic practical syllogism is sufficient.

In the example, to resolve the underspecifica-
tion, a decision is made in favour of station A as
the destination. As the translation of the request
shows, for the interpretation of an utterance con-
textual information is taken into account as well as
the content of the utterance. We have configured
the IPP Planner (Koehler et al., 1997) with plan
operators for the functionality of the model train
domain. The domain plans shown in this paper are
always computed by the IPP Planner. IPP finds the
following solution for the request:
0: switch-on cm1

put-below-spout cup1 cm1 stack1
compute-route stationB siding engine1

1: go engine1 stationB siding
fill-cup cm1 cup1

2: connect waggon1 engine1 siding
compute-route siding stationC engine1

3: go engine1 siding stationC
4: put-on-waggon engine1 waggon1 cup1

CM1 stationC
compute-route stationC stationA

engine1
5: go engine1 stationC stationA

In the next setup, there are two cups: somebody
put a cup (cup2) underneath the spout and prevents
the plan from being executed5 These constraints
are added to the initial situation:
(:init (at cm1 stationC)

(at cup1 stationC)
(underneath-spout cup2 cm1)
(at cup2 stationC)
(cup-state cup2 full))

Observe that additional constraints in the ap-
plication domain influence the course of the dia-
logue. Starting in the same way as above, now a
conflict of the plan with external events has to be
handled. Again, choice is between options on the
application as well as on the control level:

5In general, the case of implicit conflicts must be handled:
A user may give a precise command that could be satisfied
directly by the system. But its execution may conflict with
a former wish or preference (e.g. delivering the coffee with
train 1 may block the transport way connection for train 2).
So, an execution of a wish may or may not have side effects
that may be desired, irrelevant, or should be avoided.



• There is a cup underneath the spout. Your
request is cancelled.

• There is a cup underneath the spout. It’s cur-
rently being filled. Do you want this cup?

• There is a cup underneath the spout. It will
be removed immediately. Is it ok for you to
wait a few seconds or do you prefer to cancel
your request?

How are conflicts related to the practical syllo-
gism? Again, we claim that they give no argument
for non-monotonicity. In the sense of Abdallah’s
partial logic (see (Abdallah, 1995)), in a logical re-
construction of what was expected to hold this sit-
uation and what was observed, of course a logical
contradiction is entailed. But only up to the point
when – as it comes out now – the wrong option
was choosen, or – in Abdallah’s words – our “justi-
fication” knowledge was not correct. This means,
we just have to leave the wrong path from history
to future and follow the right one to remain in a
“monotonic world”.

In the last setup, we have to handle the follow-
ing situation: There are two cups in station C, one
of them underneath the spout and filled, the other
one on the robot’s stack. In contrast to the last
example however, the user’s request for a cup of
coffee was interpreted to be underspecified as far
as the selection of a cup is concerned. As a con-
sequence, the goal contains a disjunction of all the
known cups as possible candidates for satisfying
the user request.
(:goal (or (at cup1 stationA)

(at cup2 stationA)))

Now, with this underspecification in the goal, a
plan is found that may satisfy the user’s request.
The output of the planner below indicates in step 6
that there are other options that could be an answer
to the request as well.
0: compute-route stationB siding engine1
1: go engine1 stationB siding
2: connect waggon1 engine1 siding

compute-route siding stationC engine1
3: go engine1 siding stationC
4: put-on-waggon engine1 waggon1 cup2 cm1

stationC
compute-route stationC stationA

engine1
5: go engine1 stationC stationA
6: GOAL-REACHED

So, correct and useful utterances in the spirit of
(Webber, 1986) include:

• I will bring you cup2. It’s filled already.

• Is cup2 ok for you? Or do you prefer cup1?
It would take me a bit longer, however.

• Do you want cup1 oder cup2?

In each of the example cases discussed above, a
particular discourse relation is assigned to each
option available. As a consequence, the user’s
reaction determines how the structure of the dia-
logue will develop in further steps to come: De-
pending on the user’s choice for a proposed op-
tion, the current discourse and application situa-
tion have to be updated and modified differently.
New constraints that result from this update pro-
cess, may in turn influence the choices available
on discourse and application level.

6 Conclusions

We argue that the choice operator leads to a
dialogue model that distinguishes between dis-
course and application domain as choices may be-
come neccessary between options in the applica-
tion (how to satisfy a request?) and in the dis-
course (how to communicate options?). Another
consequence is that dialogues are guided by two
levels of control for analysis as well as for gener-
ation: first, the computation and selection of op-
tions in the discourse (for explaining at least se-
mantic, syntactic and discourse pragmatic ambi-
guities) and second the computation and selection
of options in the application depending on deci-
sions made in the discourse domain. Effective se-
lection of options implies the availability of a deci-
sion procedure for this task (see (Carletta, 1992)).
It must be able to handle ambiguities as well as
unsatisfiable intentions. In our opinion, a (com-
putationally tractable) approach requires different
algorithms for reasoning and deciding due to the
different nature of the tasks to be solved.

In our example application, we try to integrate
reasoning and decision procedures in a complete
dialogue system for spoken langugae processing.
On the basis of the approach outlined in this paper,
the knowledge for making the control levels work,



can be set up for various applications by defin-
ing the functionality of the application domain in
terms of a set of PDDL plan operators.

There is a lot of related work on the implemen-
tation of dialogue systems. The most important
one seems to be the TRAINS system and its suc-
cessors as described in (Allen et al., 2001). In our
view, a distinguishing feature of our work is the
focus on data-driven adaptability to new domains
– an issue not discussed in very much detail in
(Allen et al., 2001). (Yates et al., 2003) describe a
system that responds to user requests for handling
a VCR. As our system, it computes plans to sat-
isfying user intentions. However, the paper does
not explain if options – as discussed above – can
be computed and how they are integrated in a dia-
logue. We find that our hybrid approach covers a
broader range of dialogues.

References

A. N. Abdallah. 1995. The Logic of Partial Informa-
tion. New York.

J. F. Allen et al. 2001. Towards Conversational
Human-Computer Interaction. AI Magazine, 22(4):
27–38.

N. Asher, A. Lascarides. 1998. Questions
in Dialogue. Linguistics and Philoso-
phy, 21(4): 237–309. Preprint version at:
http://www.utexas.edu/cola/depts/philosophy/
faculty/asher/main.html.

P. Bretier, D. Sadek. 1996. A rational agent as the ker-
nel of a cooperative spoken dialogue system: Imple-
menting a logical theory of interaction. In: Müller,
J. P. et al. (ed.): Intelligent Agents III – Proceedings
of the Third International Workshop on Agent Theo-
ries, Architectures, and Languages (ATAL-96), Lec-
ture Notes in Artificial Intelligence: 189–203. Hei-
delberg.

A. Brietzmann, G. Görz. 1982. Pragmatics in Speech
Understanding – Revisited. In: J. Horecky (ed.):
COLING 82 – Proceedings of the Ninth Interna-
tional Conference on Computational Linguistics:
49–54. Amsterdam.

K. Bücher, G. Görz, B. Ludwig. 2002. Corega Tabs:
Incremental Semantic Composition. In: Görz, G. et
al. (ed.): KI-2002 Workshop on Applications of De-
scription Logics CEUR Proceedings. Aachen.

S. Carberry. 1990. Plan Recognition in Natural Lan-
guage Dialogue. MIT Press.

S. Carberry, L. Lambert. 1999. A process model for
recognizing communicative acts and modeling ne-

gotiation subdialogues. Computational Linguistics,
25(1): 1–53.

J. Carletta. 1992. Risk-Taking and Recovery in Task-
Oriented Dialogue. University of Edinburgh.

J. Chu-Carroll, S. Carberry. 1995. Generat-
ing information-sharing subdialogues in expert-user
consultation. In: Proceedings of IJCAI 1995: 1243–
1250.

J. Chu-Carroll, S. Carberry. 1996. Conflict detection
and resolution in collaborative planning. In: Intel-
ligent Agents: Agent Theories, Architectures, and
Languages: 111–126. Berlin.

M. Ghallab, A. Howe, C. Knoblock, D. McDermott,
A. Ram, M. Veloso, D. Weld, D. Wilkins. 1998.
PDDL – The Planning Domain Definition Lan-
guage. AIPS-98 Planning Committee.

G. Görz, K. Bücher, Y. Forkl, M. Klarner, B. Lud-
wig. 2002. Speech Dialogue Systems – A
“Pragmatics-First” Approach to Rational Interac-
tion. In: Menzel, W. (ed.): Natural Language Pro-
cessing between Linguistic Inquiry and System Engi-
neering. Festschrift für Walther von Hahn (in print).
Preprint version at: http://www8.informatik.uni-
erlangen.de/IMMD8/staff/Goerz/papersgg/
vHahnColl 2002.ps.gz. Hamburg.

H. P. Grice. 1969. Utterer’s Meaning and Intention.
In: Philosophical Review, Vol. 78: 147–177.

J. Koehler, B. Nebel, J. Hoffmann, Y. Dimopoulos.
1997. Extending Planning Graphs to an ADL Sub-
set. In: Proceedings ECP-97: 273–285. Berlin.

L. Lambert. 1993. Recognizing Complex Discourse
Acts: A Tripartite Plan-Based Model of Dialogue.
University of Delaware.

N. Lesh, C. Rich and C. L. Sidner. 1999. Using Plan
Recognition in Human-Computer Collaboration. In:
Proceedings of the 7th International Conference on
User Modelling: 23–32. Banff.

B. Ludwig, K. Bücher, G. Görz. 2002. Corega Tabs:
Mapping Semantics onto Pragmatics. In: Görz, G.
et al. (ed.): KI-2002 Workshop on Applications of
Description Logics CEUR Proceedings. Aachen.

D. Sperber, D. Wilson. 1995. Relevance – Communi-
cation and Cognition. Oxford.

B. L. Webber. 1986. Questions, answers and re-
sponses: Interacting with knowledge-base systems.
In: Brodie, M. (ed.): On Knowledge Base Manage-
ment Systems: 366–402. New York.

A. Yates, O. Etzioni, D. Weld. 2003. A Reliable Nat-
ural Language Interface to Household Appliances.
Proceedings International Conference on Intelligent
User Interfaces: 189–196. Miami, Florida.


