
A Framework for Information-State based Dialogue

Gerhard Fliedner, Daniel Bobbert
CLT Sprachtechnologie GmbH

Stuhlsatzenhausweg 69
D-66123 Saarbrücken

{fliedner,bobbert}@clt-st.de

1 Introduction

For the development of flexible and user-adaptive
natural language dialogue systems, one needs a
powerful dialogue engine. This engine must allow
representing the dialogue in a dialogue model and
executing this model. One framework for dialogue
description that has evolved over the past years is
based on the notion of information states and their
update via rules.
At CLT Sprachtechnologie, we have developed a
tool based on information state update (ISU). The
tool allows the user to model dialogues using an
information state, update rules and static plans.
The execution of these models is based on an in-
teraction of input processing and plan execution.
The system provides the user with a dialogue mod-
elling framework that is well-integrated into an
execution system, obviating the need of worrying
over basic implementation details, yet flexible
enough to allow for different sorts of dialogues.
Input and output devices (speech recognizer, TTS,
screens, buttons, etc.) as well as databases can be
integrated over an easy-to-use client interface.
Our system has been successfully used in devel-
oping, among others, an airport flight information
system, giving e.g. information on departure times,
gates, and flight status, with a high degree of flexi-
bility in user input. However, for accommodating
novice users the system automatically switches
into a more system-guided mode asking the user
for their flight information one step at a time. In
usability tests, this dialogue system performed very
well, with usability scores around 70%. This shows
that the underlying system is well-suited for flexi-
ble dialogue systems. As the demand increases
with the recent advances in dialogue systems, we
expect a growing interest in such tools.

2 Information State Update

The idea of information state update for dialogue
modelling is centred around the information state
(IS). Within the IS, the current state of the dialogue
is explicitly represented. Dialogue moves involve
an update of the information state. Thus, user in-
puts are matched against a set of possible update
rules that change the IS in the appropriate places
(e.g. a new value is entered into a slot).
ISU or related frameworks have been used in a
number of academic work recently. However, this
work has often relied on implementing tailor-made
solutions. General solutions (most prominent
among them TrindiKit, Traum et al. 99) have pro-
vided a flexible framework, but left much of the
actual implementation details to the user.
When developing our system, we have strived for a
solution that is, on the one hand, flexible enough to
accommodate a wide range of different dialogue
types and I/O modalities, on the other hand, has a
full-fledged execution system allowing a rapid de-
velopment of dialogue systems.

3 System Overview

Our system has been implemented in Java. It is
thus platform independent and runs on any com-
puter system for which a Java VM is available
(among others, Windows, Linux, Solaris, and Mac-
OS). Hardware requirements for the system itself
are modest (Pentium II processor @ 200 MHz, 64
MB main memory or comparable), plus hardware
requirements for devices (e.g. speech recognisers).
In our system, the information state is realised as a
typed, attributed structure. This structure can be
freely defined by the user for the task in hand. The
systems offers a full type system, including basic



types such as integers, strings, and Booleans, and
complex types such as lists and records of these
basic types. Attributes allow, e.g., the easy repre-
sentation of meta information (such as grounding).
User input can be pre-processed by a built in con-
text-free grammar parser with semantic tags to al-
low a semantic interpretation of the user utterance.
Input is then passed to a set of rules, which try to
match the input with patterns for the current infor-
mation state, the input device and the actual input.
Patterns can be simple value tests but also struc-
tural patterns or regular expressions, allowing the
input or part of it to be bound to variables for fur-
ther processing. The first matching rule’s body is
then executed. A rule can update the information
state, generate system output, and push new plans
that try to fulfil the systems goals. These plans are
defined statically within the dialog model.
Plans are written in a procedural programming
language, closely resembling JavaScript. The
power of this language combined with the param-
eterisation of plans enables the generation of con-
text sensitive, user adaptive dialog moves. An
important additional feature of our plans is that
they can carry information about their own ‘fulfil-
ment’. If a plan for eliciting some information
from the user (e.g. a time) has been successful (i.e.,
the user has given the relevant time in answer) is
called a second time, it would find that the infor-
mation is already present and therefore not ask the
user again to provide it. This has proven especially
important in cases when there is more than one
way of eliciting a certain information (e.g. if the
user provides a flight number, asking for the de-
parture time becomes unnecessary).
Closely connected with this is the notion of plan
failure: The system maintains a stack of currently
executed plans. Whenever a plan signals its failure,
a mechanism resembling exception handling in
many programming languages is used to identify a
higher plan that is ‘willing’ to take over control.
Every input is usually handled in its own thread
allowing for example barge-in (if the speech rec-
ogniser supports this). On the other hand, plans can
specify that they need to wait for user input in or-
der to be able to proceed. This turn-taking between
system and user (corresponding to rules and plans)
allows for a very flexible dialogue management.
The execution system gives a graphical represen-
tation of the current information state and client
communication, allowing the in-place modification

of values and attributes. Simulation of specific
dialog situations for testing purposes therefore be-
comes very easy.

4 One Example System

As an example system, we have used our dialogue
engine to implement an information seeking dia-
logue system in German based on a database with
typical flight information of an airport. The user
can enquire about a number of different flight de-
tails (ETA/ETD, delays), but also airport informa-
tion (departure gate, parking facilities).
The system lays great stress on flexibility (i.e., the
user can give information in any sequence, give
more than one piece of information in one turn, use
a wide variety of different words and sentence con-
structions). This, of course, necessitates various
different manners of grounding (implicit to ex-
plicit, including clarification). An especially im-
portant point for novice users is that the system can
switch to a more system-initiated mode where it
asks the user for pieces of information. Even then,
however, the user is always free to give informa-
tion that the system had not requested or to correct
a piece of information given earlier.
We have found, that our dialogue management tool
has been very helpful in implementing this free
example dialogue system. This is especially due to
the fact that the rules allow the matching of the
users’ inputs even in places where the system did
not actually expect them, combined with the plans
carrying information about their own fulfilment

5 Further Development

After the recent, very promising experiences from
our example systems, we plan to offer our devel-
opment tool to interested users in the community.
As an important addition, we plan to enhance our
system by adding a graphical debugging interface
that allows the close inspection of the running
system in addition to the existing logging facilities.
Also, we plan to replace our custom plan descrip-
tion language with ECMA-Script, making the
software more standards compliant.

6 References

David Traum et al. 1999. A model of dialogue moves
and information state revision, Trindi Deliverable
D2.1, http://www.ling.gu.se/research/projects/trindi/


