
DiaMant: A Tool for Rapidly Developing Spoken Dialogue Systems

Gerhard Fliedner, Daniel Bobbert
CLT Sprachtechnologie GmbH

Stuhlsatzenhausweg 69
D-66123 Saarbrücken

{fliedner,bobbert}@clt-st.de

1 Introduction

Following the recent advances in speech recogni-
tion, now allowing the reliable speaker-
independent recognition of one to two thousand
words, an increasing number of natural language
dialogue systems has been developed. These aim at
two main areas: information access dialogues (e.g.
travel information and bank account management)
and machine control (e.g. controlling car functions,
VCRs, and robots). There is a growing demand for
tools that allow the rapid development of such
dialogue systems. The users increasingly expect
systems that allow a free dialogue without the need
to learn a special command vocabulary and a
menu-oriented hierarchical dialogue structure.
At CLT Sprachtechnologie, we have developed
DiaMant (Dialogue Management Tool), a tool that
allows the rapid development of dialogue systems
based on extended finite state dialogue models.
The development is done inside a graphical user
interface that intuitively shows the dialogue model
as an automaton in a graph representation. The
dialog flow can be edited without the need to write
a single line of code. The tool has already been
successfully used in a number of applications.
As an important feature, the tool allows setting up
Wizard of Oz experiments with one mouse click,
where a human ‘wizard’ can replace input devices
such as a speech recognizer in early development
phases. This has proven especially important in
testing and improving dialogue systems, leading to
a higher acceptance of the final systems.

2 Dialogue Modeling Using FSA

Finite state automata (FSA) are an intuitive way of
modelling dialogues (cf. e.g MacTear 99). An FSA

can be represented as a graph with nodes corre-
sponding to FSA states and edges to transitions.
In this graph representation of an FSA-based dia-
logue model, then, an automaton state implicitly
represents a dialogue state (e.g. a state were a cer-
tain information has just been provided by the
user). The user’s dialogue moves are represented
by the edges of the graph. Executing a dialogue in
this model can then be thought of as traversal of
the graph, selecting transition edges according to
the user’s input in the corresponding state.
This basic model, however, is only suited for mod-
elling very simple dialogues. For more complex
dialogues, it is useful to add a possibility of ex-
plicitly storing information in slots (variables).
Such an enhanced FSA with slots forms the basis
of our dialogue development tool.

3 DiaMant: Overview

DiaMant has been implemented in Java. It is there-
fore platform independent, running on all operating
systems for which a Java VM is available (includ-
ing Windows, Linux, Solaris, and MacOS). Hard-
ware requirements for the system itself are modest
(Pentium II @ 200 MHz, 64 MB or comparable).
Client modules (among them speech recogniser
and TTS systems but also databases or other de-
vices) can be integrated using a simple-to-use in-
terface. Since the interface is TCP/IP based, clients
can even be running on other machines. For a
number of commercial speech recognisers and TTS
systems, the required modules already exist. Others
can easily be added via a simple Java wrapper pro-
vided by CLT that allows users to develop new
modules simply by extending a Java class without
the need to deal with network and protocol details.
Developing a dialogue model is done with a
graphical interface. The dialogue model is repre-



sented as a graph. A number of different types of
nodes is available: input/output and slot manipula-
tion nodes, sub-automata calls, and others.
Each of the different node types allows a suitable
parametrization. An output node, e.g., allows the
user to specify an output device (e.g. a TTS system
or a display window) and a text string or data re-
cord to send to it. Input nodes allow giving any
number of different possible input values to be
matched against the input of a specified device.
The input to be matched is given as a regular ex-
pression, allowing to match natural language input,
especially from a speech recogniser, with a high
degree of flexibility. For each possible input value,
an outgoing edge is added to the input node that
can be connected to other nodes by drag and drop.
Input can be stored in typed slots that can hold,
e.g., numbers or strings. These slots can be ac-
cessed anywhere in the dialog, in order to branch
depending on a slot value or to produce context
sensitive output. Slots and constant values can be
combined and evaluated in Boolean and arithmetic
expressions.
Recurring dialogue tasks can be stored in sub-
automata. These sub-automata have their own, lo-
cal dialogue slots. When calling a sub automaton,
parameters can be passed and resulting values can
be returned. Thus, sub-automata can be readily
compared with sub-routines and functions in pro-
gramming languages, allowing to modularise the
dialogue and keep it compact.
This intuitive way of dialogue modelling within an
easy-to-use graphical user interface allows de-
signing simple dialogs within a matter of hours.

4 Wizard of Oz Experiments

An important point in dialogue development is
providing a possibility for user experiments
(Muntteanu and Boldea 2000). These experiments
should, in general, be employed as early as possi-
ble in the dialogue development cycle: Very often,
small matters decide on the user acceptance of a
system, sometimes as little as the wording of a
system prompt. We have found it useful in dia-
logue development to be able to directly use the
current dialogue model in a user experiment.
DiaMant provides a convenient way of setting up
Wizard of Oz-type experiments. Here, one or more
input devices are simulated by a ‘wizard’, one or
more persons, possibly identical with the experi-

mentator. This allows testing a system early, when
the full functionality is not necessarily present yet.
When run in the ‘Wizard mode’, the system uses a
window on the wizard’s machine to show infor-
mation about the dialogue state to the wizard.
Whenever an input is expected, the different possi-
bilities provided for in the dialogue model are pre-
sented to the wizard to choose from (by mouse or
keyboard).
User experiments are extensively logged (includ-
ing exact time stamps), allowing the easy identifi-
cation of problematic areas. Using the log file, an
experiment can be replayed, helping with a de-
tailed analysis.

5 Example Systems

Several example systems have been built using
DiaMant. One of them is a speaking elevator that
allows the user entering an elevator carriage to
speak their destination floor aloud (including just
naming a person, whose office is on that floor).
In a recent seminar (winter term 2002/2003) at the
Saarland University’s Computational Linguistics
dept., DiaMant has been successfully used by stu-
dent groups to implement dialogue models for
controlling robots built with LEGO Mindstorms
kits. A similar course is now taking place at the
University of Kassel (summer term 2003).
DiaMant was also used successfully for user ex-
periments while developing a complex information
seeking dialogue for a flight information system.

6 Further Development

DiaMant has been successfully employed in a
number of tasks, commercially as well as for edu-
cational purposes. We currently plan to make the
tool available for interested researchers/developers.
Important goals are the adaptation of the tool to
process standard data formats, especially import
and export Voice XML, and a tighter integration of
grammar development for the speech recogniser.

7 References

Munteanu, C. and Boldea, M. 2000. “MDWOZ: A Wiz-
ard of Oz Environment for Dialog Systems Devel-
opment.” Proceedings of LREC.

McTear, Michael F. 1999. “Software to Support Re-
search and Development of Spoken Dialogue Sys-
tems.” Proceedings of the Eurospeech.


