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Abstract.
We presentSAMMIE, a laboratory demonstrator of an in-car show-

case of a multimodal dialogue system developed in theTALK project5

in cooperation between DFKI/USAAR/BOSCH/BMW, to show nat-
ural, intuitive mixed-initiative interaction, with particular emphasis
on multimodal turn-planning and natural language generation. SAM-
MIE currently supports speech-centered multimodal access forthe
driver to a MP3-player application including search and browsing,
as well as composition and modification of playlists. Our approach
to dialogue modeling is based on collaborative problem solving inte-
grated with an extended Information State Update paradigm.A for-
mal usability evaluation of a first baseline system ofSAMMIE by
naive users in a simulated environment yielded positive results, and
the improved final version will be integrated in a BMW research car.

1 Introduction

The TALK project investigates issues in multimodal dialogue sys-
tems: multilinguality, adaptivity and learning, dialoguemodeling and
multimodal turn planning. Our approach is based on an extended In-
formation State Update paradigm. Some of these issues are demon-
strated inSAMMIE, an in-car showcase developed in cooperation
between DFKI/USAAR/BOSCH/BMW. The design of theSAMMIE

system is based on a series of user studies performed in different
Wizard-of-Oz settings as well as a usability evaluation of abaseline
version of the laboratory demonstrator.SAMMIE will be integrated
into a test car at BMW later this year.

TheSAMMIE system provides a multimodal interface to an in-car
MP3 player through speech and haptic input with a BMW iDrive in-
put device, a button which can be turned, pushed dwn and sideways
in four directions. System output is provided by speech and agraph-
ical display integrated into the car’s dashboard. An example of the
system display is shown on the right in figure 1.

The MP3 player application offers a wide range of tasks: The
user can control the currently playing song, search and browse the
database by looking for any of the fields in the MP3 database (song,
artist, album, etc.), search and select playlists and even construct and
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edit playlists.
SAMMIE supports natural, intuitive mixed-initiative interaction,

with particular emphasis on multimodal turn-planning and natural
language generation. The system puts the user in control of the inter-
action. Input can be given through any modality and is not restricted
to answers to system queries. On the contrary, the user can provide
new tasks as well as any information relevant to the current task at
any time. This is achieved through modeling the interactionas a col-
laborative problem solving process, modeling the tasks andtheir pro-
gression asrecipesand a multimodal interpretation that fits any user
input into the context of the current task. Note that the useris also
free in the use of multimodal input, such as deictic references accom-
panied by pointing gestures (“Play this title” while pushing the BMW
iDrive button), and even cross-modal references without pointing as
in “Play the third song (on the list)”. To support these aspects of di-
alogue flexibility, we model dialogue context, collaborative problem
solving and the driver’s attention state by an enriched information
state. Table 1 shows a typical interaction with theSAMMIE system,
figure 3 shows the current setup for the user environment.

U: Show me the Beatles albums.
S: I have these four Beatles albums. [shows a list of album names]
U: Which songs are on this one? [selects the Red Album]
S: The Red Album contains these songs [shows a list of the songs]
U: Play the third one.
S: [song “From Me To You” plays]

Table 1. A typical interaction withSAMMIE.

The following section describes our system architecture. Section 3
presents our approach to extended multimodal interaction modeling,
ontology based modeling and its impact on natural and intuitive di-
alogues. Section 4 briefly describes our Wizard-of-Oz experiments,
the evaluation process and the results. Finally, section 5 summarizes
some important lessons learned in development and evaluation of our
system.

2 System Architecture

Our system architecture follows the classical approach [5]of a
pipelined architecture with multimodal fusion and fission modules
encapsulating the dialogue manager. Figure 1 shows the modules and
their interaction: Modality-specific recognizers and analysers pro-
vide semantically interpreted input to the multimodal fusion module
(interpretation manager in fig. 1) that interprets them in the context
of the other modalities and the current dialog context. The dialogue
manager decides on the next system move, based on its model ofthe



tasks as collaborative problem solving, on the current context and
also on the results from calls to the MP3 database. The turn plan-
ning module then generates an appropriate message to the user by
planning the actual content, distributing it over the available output
modalities and finally co-ordinating and synchronizing theoutput.
Modality-specific output modules generate spoken output and an up-
date of the graphical display. All modules interact with theextended
information state in which all context information is stored.

Figure 1. SAMMIE system architecture.

Many tasks in theSAMMIE system are modeled by a plan-based
approach. Discourse modeling, interpretation management, dialogue
management and linguistic planning, and turn planning in our sys-
tem are all based on the production rule system PATE6 [9]. originally
developed for the integration of multimodal input. During the imple-
mentation of the baseline system, we found that PATE is also ade-
quate for modeling other dialogue system components as it provides
an efficient and elegant way of realizing complex processingrules.
Section 3.5 elaborates more on PATE and the ontology-based repre-
sentations it uses. In the following sections we will concentrate on
our main areas of research.

3 Modeling Multimodal Interaction

Many dialogue systems that are employed today follow a state-based
approach that explicitly models the full (finite) set of dialogue states
and all possible transitions between them. The VoiceXML7 standard
is a prominent example of this approach. This has two drawbacks:
on the one hand, this approach is not very flexible and typically al-
lows only so-called system controlled dialogues where the user is
restricted to choosing their input from provided menu-likelists and
answering specific questions. The user never is in control ofthe dia-
logue.8 For restricted tasks with a clear structure, such an approach is
often sufficient and has been applied successfully. On the other hand,
building such applications requires a fully specified modelof all pos-
sible states and transitions, making larger applications expensive to
build and difficult to test.
6 PATE is short for (P)roduction rule system based on (A)ctivation and

(T)yped feature structure (E)lements.
7 http://www.w3.org/TR/voicexml20
8 It is possible to build state-based systems without presenting a fixed menu

hierarchy to the user. The user might even get the impressionthat they can
interact quite flexible. But of course this creates considerable application
complexity and implementation effort for all possible states and transitions.

In SAMMIE, we are following an approach that models the inter-
action on an abstract level as collaborative problem solving and adds
application specific knowledge on the possibletasks, availablere-
sourcesand knownrecipesfor achieving the goals. A planner, based
on the PATE rule-interpreter [9] dynamically derives the next move
of the system and then plans the details of the system output.

In addition, all relevant context information is administered in a
central Extended Information State (EIS) module. This is anexten-
sion of the Information State Update approach [13] to the multimodal
setting.

3.1 Extended Information State

The information state of a multimodal system needs to contain a rep-
resentation of contextual information about discourse, but also a rep-
resentation of modality-specific information and user-specific infor-
mation which can be used to plan system output suited to a given
context. The overall information state (IS) of theSAMMIE system is
shown in Figure 2.
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last-user-utterance:

:

[

interp : set(grounding-acts)
modality-requested : modality
modalities-used : set(msInput)

]

discourse-history:
: list(discourse-objects)

modality-info:

:
[

speech : speechInfo
graphic : graphicInfo

]

user-info:

:
[

cognitive-load : cogLoadInfo
user-expertise : expertiseInfo

]







































task-info:
[

cps-state : c-situation (see below for details)
pending-sys-utt : list(grounding-acts)

]

Figure 2. Structure of theSAMMIE Information State

The contextual information partition of the IS represents the multi-
modal discourse context, i.e., the information communicated through
the different modalities. It contains a record of the latestuser utter-
ance and preceding discourse history representing in a uniform way
the salient discourse entities introduced in the differentmodalities
(we follow the approach adopted in the SmartKom system [10];the
discourse model employs the three-tiered context representation pro-
posed in [7] where the linguistic layer is generalized to a modality
layer). The contents of the task partition are explained in the next
section.

3.2 Collaborative Problem Solving

We see a dialogue system as aconversational agent—an autonomous
agent which can communicate with humans through natural language
dialogue. In order to support natural and flexible conversation, we
need to model dialogue about the range of activities an agentmay
engage in, including goal selection, planning, execution,monitoring,
replanning, and so forth. To achieve this our dialogue manager is
based on an agent-based model which views dialogue as collabo-
rative problem-solving (CPS) [4]. CPS follows a process similar to



single-agent problem solving, but the agents negotiate to jointly de-
termine objectives, find and instantiate recipes to accomplish them
and execute the recipes and monitoring for success.

The basic building blocks of the formal CPS model are problem-
solving (PS) objects, which we represent as typed feature structures.
PS object types form a single-inheritance hierarchy, wherechildren
inherit or specialize features from parents. Instances of these types
are then used in problem solving.

In our CPS model, we define types for the upper level of an on-
tology of PS objects, which we termabstract PS objects. There are
six abstract PS objects in our model from which all other domain-
specific PS objects inherit: objective, recipe, constraint, evaluation,
situation, and resource. These abstract PS objects are usedto model
problem-solving at a domain-independent level and are taken as ar-
guments by all update operators of the dialogue manager which im-
plement conversation acts [4, 12]. The model is then specialized to
a domain by inheriting and instantiating domain-specific types and
instances from the PS objects. For example, the domain-specific ob-
jectiveplay-songin the MP3 domain inherits all attributes fromob-
jectiveand adds a has-song slot, which issingle-slotof type song.
The operators, however, do not change with domain, which supports
reasoning done at a domain-independent level.

3.3 Adaptive Turn Planning

In a multimodal dialogue system, thefissioncomponent is responsi-
ble for realising the planned system response as determinedby the
dialogue manager through multimodal output in an appropriate com-
bination of the available output channels. This task comprises de-
tailed content planning, media allocation and coordination and syn-
chronization.

In SAMMIE, the fission task is realised by two modules - the
Turn Plannerand theOutput Manager, whereas user- and modality-
specific information which might be necessary for presentation plan-
ning can be obtained from another module calledPastis. Pastis is
designed to provide and store user-, modality- and also discourse-
specific information and forms, together with the dialogue manager’s
embedded information state as theExtended Information Stateof the
system.

When the dialogue manager has finished processing the user in-
put, the turn planner (TP) receives a bundle of CPS-specific con-
versational acts, representing the planned system response on an ab-
stract level. TP then starts planning how to distribute given informa-
tion over the available modalities, namely speech and graphics, but
also determines on which level of detail information is going to be
presented. As soon as TP has finished processing, it sends a sorted
bundle of output messages, including both speech and graphic mes-
sages, to the output manager. The output manager then distributes the
messages to the graphics renderer and/or the generation manager and
synchronizes their output rendering.

The Turn Planner within theSAMMIE system is responsible for
content selection and media allocation. It takes a set of CPS-specific
conversational acts generated by the dialogue manager and maps
them to modality-specific communicative acts. Therefore, relevant
information on how content should be distributed over the available
modalities (speech or graphics) can be obtained by

(a) the EIS/discourse module Pastis, which provides information
about

(1) the modality on which the user is currently focused, derived by
the current discourse context.

(2) the user’s current cognitive load when system interaction be-
comes a secondary task (e.g., system interaction while driving).
This information is modeled as a state variable with the possi-
ble stateslow, mid, high or extreme.

(3) the user’s expertise, which is represented as a state variable with
the possible statespower-useror beginner.

Pastis also contains information about factors that influence the
preparation of output rendering for a modality, like the currently
used language (German or English) or the display capabilities
(e.g., maximum number of displayable objects within a table).9

(b) a set of production rules that determine which kind of informa-
tion should be presented through which modality. The rule set is
divided in two subsets, domain-specific and domain-independent
rules which together form the system’s multimodal plan library.
These rules are used to create the presentation plan for a turn,
while dynamically taking the information listed in (a) intoac-
count.

Beside determining the best possible distribution of information, the
turn planner also transforms domain-specific information that will be
presented by speech to a representation we callReduced Knowledge
Representation(RKR) that can be interpreted by the Linguistic Plan-
ner. Such an RKR structure differs from its source structurethrough
its more general, abstract surface structure which can be seen as an
intermediate form between a pure ontological representation of a do-
main specific object and the logical form representation that the lin-
guistic planner needs for deep generation with OpenCCG. Further-
more, an RKR structure specifies exactly the information that has to
be presented to the user. Beside deriving the appropriate input for
NLG, the turn planner is also responsible for computing and packag-
ing the appropriate information to be presented by the display. Addi-
tionally, if there are alternatives on how to graphically realize content
in different ways the turn planner needs to decide which one to take.

3.4 Spoken Natural Language Output Generation

Our goal is to produce output that varies in the surface realiza-
tion form and is adapted to the context. We opted for using both a
template-based and a deep grammar-based module in parallel. On
the one hand, deep generation provides linguistically morepowerful
modeling, in particular it allows for more fine-grained and controlled
choices between linguistic expressions in order to achievecontextu-
ally appropriate output. On the other hand, the template-based mod-
ule can be developed faster and thus facilitates incremental develop-
ment. It is also sufficient for classes of system output that do not need
fine-tuned context-driven variation, such as simple cases of feedback.
Our template-based generator can also deliver alternativerealiza-
tions, e.g., alternative syntactic constructionsThere are 3 songs by
Nenavs. I found 3 songs by Nena, referring expressionsNenavs. the
artist Nena, or lexical items, e.g.,songvs. track; however, the choice
among alternative templates is made at random. The template-based
generator is implemented by a set of straightforward sentence plan-
ning rules in the PATE system to build the templates, and a setof
XSLT transformations to yield the output strings. Output inGerman
and English is produced by accessing different dictionaries in a uni-
form way.

The grammar-based generator uses OpenCCG, an open-source
natural language processing environment[3]. We have developed a

9 Note, that for points (2) and (3) we haven’t yet fully elaborated the rule
based processing of these factors as this part of our ongoingwork.



German OpenCCG grammar with basic coverage of German phe-
nomena, and gradually extend it with respect to the phenomena en-
countered in theSAMMIE-1 andSAMMIE-2 corpora (see section 4).

3.5 Modeling with an Ontology

We use a full model of the application in OWL10 format as the knowl-
edge representation format in the dialogue manager, turn planner and
sentence planner. This model includes the entities, properties and
relations of the MP3 domain—including the player, data baseand
playlists. Also, all possible tasks that the user may perform are mod-
eled explicitly. Note that this is a model that isuser centeredand not
simply a model of the application’s API. Actually, there is aseparate
module, the MP3-shield, that maps user tasks into possibly complex
interactions with the connected applications, i.e., the database and
the MP3 player itself.

The OWL-based model is transformed automatically to the inter-
nal format used in the PATE rule-interpreter. PATE employs Typed
Feature Structures (TFSs) as basic internal data representation and
XML for encoding all incoming and outgoing data as well as knowl-
edge bases (production rules, type definitions). PATE is based on
some concepts of the ACT-R 4.0 system [2]. Its main concepts,which
PATE makes use of, are the goal-oriented application of production
rules, the activation of working memory elements, and the weight-
ing of production rules. In processing TFSs, PATE provides two op-
erations that both integrate data and also are suitable for condition
matching in production rule systems, namely a slightly extended ver-
sion of the generalunification, but also the discourse-oriented oper-
ationoverlay[1].

Another important feature is the concept of multiple inheritance
provided by the type system, as it allows to define different views
on ontological concepts. Consider the conceptSongand the differ-
ent views our system ontology provides. ASongcan be seen as a
Browsable-objectwhich allows generalization within the turn plan-
ning library over objects a user can browse. It can also be seen as
a Media-objector aProblem-solving-objectwhich are abstract con-
cepts dialogue management can use for planning and execution. Or it
can be seen as aMp3-resourcewhich denotes the domain affiliation
of the concept. Thereby PATE provides an efficient and elegant way
to create more abstract/generic presentation planning rules.

4 Experiments and Evaluation

To guide system development we have so far conducted two WOZ
data collectionexperiments and oneevaluationexperiment with a
baseline version of our system. TheSAMMIE-1 WOZ experiment
involved only spoken interaction,SAMMIE-2 was multimodal, with
speech and haptic input, and the subjects had to perform a primary
driving task using a Lane Change simulator [8] in a half of theexper-
iment session. The wizard was simulating an MP3 player application
with access to a large database of information (but not actual mu-
sic) of more than 150,000 music albums (almost 1 million songs).
The user had to carry out several tasks of two types: searching for
a title either in the database or in an existing playlist, andbuilding
a playlist satisfying a number of constraints. In order to collect data
with a variety of interaction strategies, we used multiple wizards and
gave them freedom to decide about their response and its realization.
In the multimodal setup inSAMMIE-2, the wizards could also freely
decide between mono-modal and multimodal output. There is not

10 http://www.w3.org/TR/owl-features

enough time for the wizard to properly design the screen output on
the fly. Therefore, we implemented modules supporting the wizard
by providing several automatically generated screen output options
the wizard could select from and inform the user about the database
search results using the visual modality.

The following aspects of the setup were designed to elicit inter-
actions more realistically resembling dialogue with an actual sys-
tem [6]: The wizard and the user did not directly hear each other,
instead, their utterances were immediately transcribed; the wizard’s
utterances were then presented to the user via a speech synthesizer,
and parts of the user’s utterances were sometimes deleted tosimulate
acoustic understanding problems and elicit clarifications.

Figure 3. The current setup of the user environment.

To explore the user acceptance, usability, and performanceof a
first baseline implementation of theSAMMIE multimodal dialogue
system we have completed a usability evaluation. The evaluation
tested the multimodal interaction of first-time users with theSAMMIE

system in a laboratory experiment with a simulated driving task (fig-
ure 3 shows the setup). A sample of 20 subjects performed 32 tasks
in total out of three scenarios with variation of the different kinds of
dialogue modalities (spoken vs. multimodal). The users were asked
to perform tasks which tested the system functionality, namely con-
trolling player functions like stop/play/pause, next/previous track,
playing a particular/random song/album/playlist, querying the music
database (e.g., available songs/albums/artists/playlists) and adminis-
tration of playlists (create/delete playlists, add/remove songs).

The evaluation analyzed the user’s interaction with the baseline
system and combined objective measurements like task completion
and speech recognition accuracy observed in the experiments and
subjective ratings from the test subjects by means of intermediate in-
terviews during the session and by post-experimental questionnaires.
The analysis of the experiments yielded an overall task completion
rate (TCR) of about 90% for both spoken and multimodal interac-
tion. Note that we allow up to four repeats for a user input. Rela-
tively small differences in TCR between the dialogue modalities but
considerable decrease of TCR for the more complex tasks havebeen
observed. This was partly due to a relatively high out-of-grammar
rate and consequently word error rate which showed the need to fur-
ther increase the ASR grammar coverage.

Spoken dialogue was observed as the preferred interaction modal-
ity in the experiments. About 70% of the subjects chose speech when
they had the free choice and less than 10% changed the modality
during the task. Nevertheless, 40% of all subjects would prefer mul-
timodal interaction in the long run when having more practice with
the system. The general impression of theSAMMIE system was rated
positively by most of the test subjects and changing the interaction
modality was simple or very simple for 95% of the users. Also,the
content and extent of the system’s spoken and graphical output mes-
sages were rated mostly positively. But a detailed analysisof the ob-



jective measurements and subjective ratings also revealedsome im-
portant issues for significant improvement towards the finalversion
of theSAMMIE system.

The following section reflects some of the lessons learned from
this evaluation.

5 Lessons Learned

To summarize the current state of our research and development, this
section attempts to present the most important lessons learned to date
and the biggest challenges for AI in the domain of natural, intuitive
multimodal interaction.

• Reliable and robust ASR: When the system does not recognize the
user’s utterance, the biggest challenge for the user and thesystem
is to know what went wrong. We are addressing this on two fronts:
SAMMIE tries to give feedback about partially understood utter-
ances with appropriate clarification requests. Also, we areusing
the data collection to expand the language covered by the recog-
nition grammars.

• Natural and understandable speech synthesis: We have used the
multilingual capabilities of the Mary TTS [11] to pronounceEn-
glish song titles correctly, even when embedded in a German ut-
terance. Also, markup of the speech output should allow context
dependent prosodic cues such as pauses around elements to be
clarified. To address users’ demands, we need to increase thenat-
uralness and acoustic quality of the TTS.

• System responsiveness: For command and control type interac-
tion, e.g., stopping the MP3 player, time delays should be inthe
millisecond range. Thus we have added shortcuts directly from
speech recognition to the player application, such that thefull di-
alogue system is updated only in parallel or later. However,the
context model must be kept synchronized with the course of the
dialogue. Overall, reaction times (for complex input) haveto be
improved to satisfy the requirements of in-car systems.

• Close to real time system feedback: early on, we have added a
multimodal microphone state, signaling to the user whetherthe
system is ready and listening or currently processing input. The
microphone shown on the GUI (see figure 1) toggles between red
and green, accompanied by characteristic acoustic signals.

• Speech-centered multimodality: The evaluation confirmed that
speech is the most important modality for our system, however
the graphical and haptic modalities were used and valued by users.
Since driving as the primary task leaves fewer and sometimeslit-
tle attention (in particular, visual attention) for interacting with the
SAMMIE system, turn planning must assure that core information
is conveyed in speech and only additional information is presented
on the display. Such additional information must also be accessi-
ble through spoken interaction.

• Adaptive, context-sensitive presentation: Natural, intuitive, multi-
modal interaction can be achieved through true mixed-initiative,
collaborative interaction. Our system dynamically adaptsits next
move to give “intelligent” replies that (i) make the system’s under-
standing transparent and (ii) ask for clarification when necessary
and (iii) that query for more information by dynamically deter-
mining the most informative type of information, e.g. albumname
rather than artist name11.

The last point represents the ultimate goal of our work: optimize
all the above issues in the context of a flexible dialogue paradigm

11 We are currently experimenting with clustering algorithmsto adequately
summarize large sets of answers for a database query.

(Extended Information State Update) to achieve natural andintuitive
multimodal interaction.

6 Conclusion

We presented an in-car multimodal dialogue system for an MP3ap-
plication developed in theTALK project in cooperation between sev-
eral academic and industrial partners. The system employs the In-
formation State Update paradigm, extended to model collaborative
problem solving and multimodal context. It supports natural, intu-
itive mixed-initiative interaction, with particular emphasis on mul-
timodal turn-planning and natural language generation to produce
output adapted to the context, including the driver’s attention state
with respect to the primary driving task. We performed extensive
user studies in a WOZ setup to guide the system design. A formal
usability evaluation of the system’s baseline version in a simulated
environment has been carried out with overall positive results. A fur-
ther enhanced version of the system will be integrated and evaluated
in a test car, demonstrating the successful transfer of a range of AI
techniques towards a real world application.
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