Language Technology I: Language Checking

Berthold Crysmann

crysmann@dfki.de

Overview

□ Spelling correction

- Application areas
- Error types and frequency
- Technology
 - Words & Non-words
 - Context-sensitive checking

Grammar checking

- Application areas
- Error classification
- Technology:
 - Constraint relaxation
 - Error anticipation

Controlled Language Checking

Spelling correction - 1: Introduction

□ Application areas

- Authoring support
- O OCR
- Preprocessing for IE, IR, QA, MT etc.

□ Typical error rates

- Typewritten text
 - 0.05% in edited newswire text
 - up to 38% in telephone directory lookups (Kukich 1992)
 - 1-3% in human typewritten text (Grudin 1983)
 cf. 1.5-2.5% in handwritten text (Kukich 1992)
- O OCR
 - 2-3% for handwritten input (Apple's NEWTON; Yaeger et al. 1998)
 - 0.2% for 1st generation typed input (Lopresti & Zhou 1997)
 - up to 20% for multiple copies/faxes (Lopresti & Zhou 1997)

Spelling correction - 2: Error types

□ Competence errors (cognitive)

- Ex.: *seperate vs. separate
 *Lexikas vs. Lexika
- vary across speakers (learned, native, non-native)
- O Error reasons:
 - phonetic: see above
 - homonyms: piece vs. peace

□ Performance errors (typographic)

- O Ex.: *speel vs. speel
- Single error misspellings account for 80% of non-words (Damerau 1964)
 - insertion: *ther vs. the
 - deletion: *th vs. the
 - substitution: *thw vs. the
 - transposition: *hte vs. the
- Error reason (Grudin 1983):
 - substitution of adjacent keys (same row/column) and hands account for 83% of novice substitutions (experts: 51%)

Spelling correction - 2: Error types

- Ex. (Lopresti & Zhou 1997):
 The quick brown fox jumped over the lazy dog.
 'Ihe q~ick brown foxjurnps over the lazy dog.
- Error types:
 - Substitution: ovcr
 - Multisubstitution: 'Ihe, tb
 - Space deletion/insertion: foxjurnps, I azy
 - Failures: q~ick

Spelling correction 2: Technology

Detecting non-words

□ Naïve approach: dictionary lookup

- Limited to error detection
- Problematic with languages featuring productive morphology
- Early spell checkers (e.g. UNIX spell) permit (unconstrained) combination with affixes
 - massive overgeneration
- Current spell checkers incorporate true morphology component
- Lexicon size
 - Large lexicon: legitimate, rare words may mask common misspellings (Peterson 1986): won't vs. wont
 "bidden" single error misspellings 40% for 50,000 word distingers, 45% for 250,000
 - "hidden" single error mispellings: 10% for 50,000 word dictionary, 15% for 350,000
 - Damerau & Mays 1989 show that, in practice, large lexica improve spelling correction

Spelling correction 2: Technology – Bayesian approach

Noisy channel model (Jelinek 1970): first application to spell checking by Kernighan et al. 1990

- Guess correct word based on observation of non-word: ^w = argmax P(w|O), w element of vocabulary V
- Equivalent to ^w= argmax (P(O|w) P(w)) / P(O)) (Bayesian rule)
- □ Simplified to ^w = argmax P(O|w) P(w), since P(O) constant
 - Prior P(w) trivial to compute
 - Likelyhood P(O|w) must be estimated
- □ Kernighan et al.'s checking algorithm:
 - propose candidate corrections
 - rank candidates

Spelling correction 2: Technology – Bayesian approach

Candidate corrections

 Only single errors (insert,delete,transpose,substitute) considered by Kernighan et al.

Rank candidates

- $^c = \operatorname{argmax} P(O|c) P(c)$
- P(c) equivalent to corpus frequency plus smoothing
- P(O|c) estimated based on handannotated corpus of typos (Grudin (1983)
 - 4 confusion matrices (26x26) for letter insertion, deletion, transposition, substitution
- Alternative (Kernighan et al. 1990)
 - EM-based estimation
 - Accuracy: 87% (best of 3)

		Transformation				
	~	Correct	Error	Position		
Error	Correction	Letter	Letter	(Letter #)	Туре	
acress	actress	t	-	2	deletion	
acress	cress	-	a	0	insertion	
acress	caress	ca	ac	0	transposition	
acress	access	c	r	2	substitution	
acress	across	0	e	3	substitution	
acress	acres	-	2	5	insertion	
acress	acres	-	2	4	insertion	

Figure 5.2 Candidate corrections for the misspelling *acress*, together with the transformations that would have produced the error (after Kernighan et al. (1990)). "–" represents a null letter.

c	freq(c)	p(c)	p(t c)	p(t c)p(c)	%
actress	1343	.0000315	.000117	3.69×10^{-9}	37%
cress	0	.00000014	.00000144	2.02×10^{-14}	0%
caress	4	.0000001	.00000164	1.64×10^{-13}	0%
access	2280	.000058	.00000209	1.21×10^{-11}	0%
across	8436	.00019	.0000093	1.77×10^{-9}	18%
acres	2879	.000065	.0000321	2.09×10^{-9}	21%
acres	2879	.000065	.0000342	2.22×10^{-9}	23%

Figure 5.3 Computation of the ranking for each candidate correction. Note that the highest ranked word is not *actress* but *acres* (the two lines at the bottom of the table), since *acres* can be generated in two ways. The *del*[], *ins*[], *sub*[], and *trans*[] confusion matrices are given in full in Kernighan et al. (1990).

Spelling correction 2: Technology – Multiple error correction

- □ Minimal edit distance (Wagner & Fischer 1974):
 - editing operations are insertion, deletion, substitution
- □ Editing operations can be weighted
 - Simplest weighting factor (all 1) also known as Levenshtein-distance)
- Minimal edit distance can be combined with editing probabilities (product)
- Efficient integration with letter trees and FSAs possible (e.g. Wagner 1974, Mohri 1996, Oflazer 1996)
- □ Alternative: determine string distance based on shared n-grams
 - O Index lexicon entries according to string n-grams they contain
 - Maximise number of shared n-grams

Spelling correction 2: Technology – Context-dependent error detection

□ Main objective: detect real-word errors

 \bigcirc Ex.: piece – peace, it's – its, from – form

□ Confusion sets (Ravin 1993)

- Group frequently confounded words into confusion sets
- Develop heuristics to detect erroneous uses of elements within each set

n-grams

- Mays et al. 1991 employ 3-gram probabilities to compare sentences with their automatically generated variants
- Mays et al. report correction rates of 70%
- Combination of n-gram methods with predefined confusion sets (Golding & Schabes 1996) provides good results (98% corrections)

Other application:

- Errors in OCR of idiographs (e.g. Chinese) typically produce legitimate (though wrong) words
- Hong 1996 employs bigram probabilities and CFGs to detect recognition errors and estimate the most likely word sequence

Grammar & style checking: Introduction

□ Application areas

- Authoring support
- CALL (Computer-aided Language Learning)
- Pre-editing for MT (see Controlled Language Checking)

Characterisation

- Ill-formed sentences/phrases derived from combination of well-formed words
- May include detection of real-word spelling errors, in particular
- Grammar checkers often include style checking rules

Style checking

- Document-internal consistency
- Conformance to particular register

Grammar checking: Example errors 1 – Competence errors

- **U** Typical errors (German):
 - Confusion of complementiser/relativiser
 - Er schlug dem Kollegium vor, das*(s) montags und freitags keine Vorlesungen stattfinden.
 - Comparatives
 - *größer ... wie (dialectal)
 - O Agreement
 - *ein großer(m) Fehlerkorpus(n) (colloquial)
 - O Blends
 - *meines Wissens nach

□ Error type acquisition

- Error collections, prescriptive grammars (e.g. DUDEN), style & grammar guides (e.g. "Stolpersteine")
- Corpus annotation

Grammar checking: Example errors 2 – Performance errors

□ Typical errors

- O Doublets
 - **the development of of a grammar checker*
 - *... denn Dubletten können auch nicht-lokal auftreten können
- O Omissions
- Transpositions
- Typographically induced grammar errors
 - *eine besser Grammatiküberprüfung
 - *a farmer form Oregon

□ Error type acquisition

- O Introspection
- Corpus annotation

Grammar checking: Error classification – 1

- □ 3 dimensions (Rodríguez et al. 1996): source, cause, effect
- □ Source
 - e.g. violation of particular grammatical constraints
 - O language-specific

Cause

- Competence
- O Performance
 - Typographic errors
 - Editing errors
- Input system (e.g. OCR)
- Effect
 - O Word-level insertion, deletion, transposition, substitution
 - Constraint violation

Grammar checking: Error classification 2 – Complexity

□ A 4th dimension: error detection/correction costs

- Grammatical modules:
 - Morphology
 - PoS-tagging
 - Chunk-parsing
 - Full parse
 - Sortal/Full semantics
 - Pragmatics
- Locality of context
 - word
 - bounded context
 - sentence

□ Observation:

• Not always clear correspondence between error type and locality of context

Grammar checking: Error classification 2 – Complexity (example)

Example error:

- *meines Wissens nach
- Blend of *"meines Wissens(gen)"* with *"meinem(dat) Wissen(dat) nach"*

Highly frequent:

- 100 erroneous occurences in 8 million word corpus
- O 512 non-erroneous occurences
- 16 occurences of alternate form (*"nach meinem Wissen"*)
- 2 potential false positives (*"meines Wissens nach einem Proporz verteilt"*)

Complicating factors

- Ambiguity between pre- and postposition
- Ambiguity between preposition and (stranded) verb particle

Grammar checking: Error classification 2 – Complexity (example)

□ Checking cost depends on linguistic context

- Clear true positive
 - Offending string immediately followed by finite verb *[meines Wissens nach] kam sie nie zu spät
- Almost certainly false positive
 - Offending string followed by dative NP (prepositional use of "nach") [meines Wissens] [nach der Zerschlagung] des Faschismus eingeführt
- O Uncertain
 - Offending string at sentence boundary

 (*)die Uhr ging meines Wissens nach (separable verb prefix)
 *der Minister demissionierte meines Wissens nach
 - Offending string followed by preposition
 *meines Wissens nach im Januar eingeführt

 (*)der Minister kam meines Wissens nach zum Essen (PP-extraposition)

Grammar checking: Error classification 2 – Complexity

- □ Well-formed errors (Uszkoreit et al. 1997)
- □ Successful parse does not guarantee well-formedness
 - *No friendship can lasts forever. vs.
 No beer can lasts forever, even aluminum rots.
 - *Netscape showed a new browser a new browser at CeBIT.
 I showed Mary the new boss at the party.
- Large-scale grammars can often provide analyses for erroneous input
 - by combining marked or infrequent constructions
 - *das Buch haben [der ø] [ø Schüler] gekauft
 - combination of head-less NP, det-less NP with free dative
 - owing to absence of sortal restrictions and/or world knowledge

Grammar checking: Error classification 3 – Performance vs. Competence

- One linguistic constraint is violated
- There may be no correct alternative based on segment (e.g. missing lexical entry)
- Checking for most error types should be optional (user customisable)
- Simple error detection insufficient; explanation/correction needed
- Specialised modules according to native background and level of proficiency

- No direct correspondence with grammar
- A correct alternative always exists
- □ No customisation necessary
- **Error detection sufficient**
- Special modules for specific input methods

Grammar checking: Error classification 4 – Example error typology

□ FLAG (Crysmann 1997; Becker et al . 2002)

- Hierarchical error classification
- O Annotation for
 - error type
 - error domain (NP)
 - error site (wrong adjectival form)
 - and lexical anchors (triggering condition for specific error types, e.g., neuter latinate nouns ending in *-us*)
- Syntax errors:
 - Government (categorial, case, semantic selection etc.)
 - Concord (NP-internal)
 - Agreement (Subject-Verb, Antecedent-Anaphor)

Grammar checking: Error classification 5 – Error frequency

Overall scarce distribution of grammatical errors

- Punctuation errors more frequent than the sum of all other grammar errors
- Problem: low a priori probability for true errors implies low precision

□ Schmidt-Wigger (1998)

O 7,500 sentences (BMW-corpus) manually annotated

Ο	Error type	Error frequency
	Punctuation	238
	Capitalisation	17
	Separation	46
	Agreement	44
	Other (repetitions,omissions)	18

	DiET V1.Oc (D	B: flag)	7 4
Client Help			
Mode Annotate =			
In Test-Suite Flag News1b-1M	show Test-items	Schema	Text profiler
naving ×	as Name/ID		
004700 Zumal die DOS-Domaene la	angsam zu Grabe getragen werden sollte! 🛆	□ - Annotation-Types and Annotations	
004702 EE Probleme beseitigt.		₽-Source	
004703 Alle Nachbauten der Teles v	on Creatix, Dr. Neuhaus etc. werden eber	News Posting (1) 960	
004704 Ausserdem wird noch eine a	ktive Karte von ICN unterstuetzt (ist natuer	Sentence No. (1) 4708	
004705 Wenn Du kein uisdn brauch	st, sollte auch die 16.3 reichen, die man h	□- Error-Classification	
004707 Ich habe auch mit Dip gearb	eitet, und hatte da folgendes Problem: Ich	Sentence Status (1) error	
004708 Das heisst, dass dein Rechr	er, jedes mal wenn du anrufst, einen ande	Error Type (4) O + SC + SGC	as + OS
004709 Dann musst du mit dem route	befehl die Verbindung noch einrichten.	Number of Errors (1) 4	
004710 Genau, sowas suche ich au	ch schon.	Error Locality (4)	
004711 Newsserver einzurichten, un	d mit diversen, kryptischen Progs die Date		
004712 Ort: Moeglichst im Grossraur	n Muenchen.		
004717 Habe seit neuestem ein Elsa		Error Locality	,,,
004718 Wer weiss abhilfe bzw. hat a	New Save Undo Del ->Comm Service		4 of 4
004719 Eigentlich 100% korrekt.			
004720 "Den ersten fand ich besser	Mark text zones:		
004721 Ich bin reich, ich bin reich			
004722 Mir gefallen zwar die X-File			
004723 Fragmente von unglaubwuer			
004724 Sowas wie Recherche schei		×	
004725 Da die gelieferten Daten in k			Unmark
004726 Du auch, Stefan!	Das heisst, dass dein Rechner, jedes ma	I wenn du anrufst, einer andere Adresse zu	lgewiesen werden muss.
	[]		
	Lasmossen 11-reb-22 12:33 Phj		pave all undo all Close

Grammar checking: Error classification 5 – Error frequency

	Label	Token
Syntax (general)		3
agreement	SASV	63
anaphor agreement	SAAA	1
P-internal agreement)	SC	180
	SO	79
neral)	SG	0
sation	SGCat	854
ment	SGCas	102
lection	SGS	265
		1547
	М	91
(general)	0	2893
	OI	1701
small letters	OC	2776
s. separate words	OS	1100
ohy		7561
		9108
ubi	y le 1.2 Distribution of Er	<i>le 1.2</i> Distribution of Error Types

Grammar checking: Technology

□ Two paradigms:

- Parsing & Constraint relaxation
- O Error anticipation

Design criteria

- O Speed
- Error specification (positive vs. negative)
- Error locality & correction
- Feasibility

Grammar checking: Ungrammaticality and extra-grammaticality

- □ Overgeneration and Undergeneration: L(G) ≠ L(N)
 - Precision: Impeccable sentences erroneously flagged as erratic
 - Recall:
 - Implemented grammars may overgenerate
 - Syntactically, semantically or pragmatically marked constructions may mask true errors (well-formed errors)
- Consequence: Importance of error models
 - Manual construction (heuristics)
 - Automatic construction
 - complementation of FSAs (Sofkova 2000)
 - Negation of constraints (Menzel 1988)
 - O Corpus-based

Ungrammatical

□ Robustness techniques (e.g., Stede 1992)

- Underspecification
- Error anticipation
- O Constraint relaxation
- Partial parsing (and fragment parsing)

□ Robustness in grammar checking

- Multiple pass strategy (e.g., CRITIQUE; Jensen et al. 1993)
 - Initial parse w/ full constraint set, relaxation on subsequent runs
 - Cost-neutral for well-formed input (L(G))
 - Partial results cannot be reused
- Relaxable constraints (e.g., Douglas & Dale 1992 ; Rodríguez et al. 1996)
- Parsing w/o constraints (Kudo 1988; Genthial et al. 1994)
 - Initial parse w/ CFG or DG backbone
 - Subsequent activation of morphosyntactic constraints (e.g., f-structure wellformedness constraints)
 - Word-order related errors (permutation, omissions etc.) undetectable

□ Robust PATR (Douglas & Dale 1992)

- Classify indvidual constraints as necessary/optional at different relaxation levels
- On failure:
 - necessary constraint: proceed to next relaxation level
 - optional constraint: record failing constraint for error diagnosis
- Assumption:
 - Errors are local
 - Error locality corresponds to constituency and parsing strategy

X0	\rightarrow	X1 X2		
	1	(X0 cat)	=	NP
	2	(X1 cat)	=	Det
	3	(X2 cat)	=	N
	4	(X1 agr precedes)	=	(X2 agr begins)
	5	(X1 agr num)	=	(X2 agr num)
	6	(X0 agr num)	=	(X2 agr num)

Figure 3: Simple NP rule in the PATR formalism

Relaxation level 0: necessary constraints = $\{1,2,3,4,5,6\}$ optional constraints = $\{\}$

Relaxation level 1: necessary constraints = $\{1,2,3,6\}$ optional constraints = $\{5,4\}$

Figure 5: The relaxation specification for the NP rule, version 1: optional constraints

Relaxation level 1: necessary constraints: {1,2,3} relaxation packages:

- (a) {5, 6}: Premodifier-noun number disagreement
- (b) $\{4\}$: a/an error

Figure 6: The relaxation specification for the NP rule, version 2: grouped constraints

Constraint relaxation in HPSG-style grammars (e.g. LateSlav)

- Relocate reentracies in HPSG-style rules to relational constraints
- Assign diagnostic message to "error constraint"


```
agree(X,X,X,no_error).
agree(X,Y,X,agreement_error) :- X \= Y.
```

□ Alternative (e.g. JPSG)

- O Generalise feature values on unification failure
- Massive explosion of parse search space

Properties

Implit incorporation of error model (relaxation technique/relaxable constraints)

□ Advantages

- Negative specification of error patterns (detect unforeseen errors)
- Reuse of existing competence grammars
- Validation of well-formed input (modulo well-formed errors)

Disadvantages

- O Speed
 - Relaxation augments search space in parsing
 - Error sparseness (processing effort wasted on mostly correct sentences)
- O Error locality
- O Error diagnosis
- Feasibility
 - Availability of large-scale high-precision grammars
 - Expressability of error patterns as constraints (e.g. omissions, insertions)
 - Integration of style rules (e.g. CRITIQUE sytem; Jenssen et al. 1993)

Grammar checking: Technology – Error anticipation 1

Properties

- Explicit error model
- Pattern matching (heuristics)

Disadvantages

- Positive specification of error patterns (cannot detect unforeseen errors)
- Only partial validation of well-formed input

Advantages

- O Speed
- Focussed processing & Resource adaptivity
- O Error locality
- Detailed error diagnosis
- Feasibility
 - Unavailability of large-scale high-precision grammars
 - Expressability of error patterns as constraints (e.g. omissions, insertions)

Grammar checking:

Technology – Error anticipation 2

Example application: FLAG (Bredenkamp, Crysmann, Petrea 2000); now: acrocheck

□ Linguistic annotation:

- Morphology (MULTEXT mmorph)
- O HMM PoS-Tagging (Brants 1999)
- Chunk parsing (Skut & Brants 1998) & Topological parsing (Braun 1999)

Error detection

- Feature structure pattern matching (form, morphology, PoS)
- Bottom-up integration of (partial) parsing
- O Systematic distinction between
 - initial trigger rules
 - confirming/disconfirming evidence (broader context, elaborate machinery)
- Error heuristics (pattern matching rules) are weighted

) 🙋 💆 😼 🕼 🖳 💆 🗱 🚜 🔤 🚯 🚱 🖆 🐛

Location: file:/C:/development/Flag/Demo/html/sab-new.html

- 1. Der Dokumentteilauftrag wird gelöscht.
- 2. Er wird böse, weil ich die Verteilaufträge gelöscht habe.
- Wenn Sie einen Wert aus neu erzeugten oder nicht gespeicherte Tabellen löschen, können Sie ihn nicht mehr ändern.
- 4. Wenn Sie einen Wert aus dem Bestand löschen, können Sie ihn nicht mehr ändern.f
- Wenn Sie einen Wert aus dem aktuellem Bestand löschen, können Sie seinen Wert nicht mehr ändern.
- Wenn sie eine Position aus der Tabelle löschen, werden ihre Werte gelöscht.
- 7. Bitte zuerst Werk markieren.
- 8. Ende des Block markieren.

9. Sie haben keine Berechtigung für das Analyseprogramm.

- 10. Sie haben keine Berechtigung, Positionen ohne Beziehung zu ...
- 11. Sollen die Dokumentenverwaltungssätze gesichert werden?
- 12. Möchten Sie die geänderte Werte des Dokumentinfosatzes sichern?
- Geben Sie Ihren Namen nicht ein, wenn Sie die Meldung nicht erhalten möchten.

Done.

Source: Berthold Crysmann 2005

Results:

Sentence 3

ERROR: from 1 to 10 NP-internal agreement: Adjectives must have identical inflection

Sentence 5

ERROR: from 1 to 8 NP-internal agreement: Determiner and adjective do not agree

Sentence 8

ERROR: from 1 to 3 NP-internal agreement: Determiner does not agree with the noun

Sentence 12

ERROR: from 1 to 5 NP-internal agreement: Determiner and adjective do not agree

Grammar checking: Summary & Outlook

Current status

- Low precision implies low user acceptance
- Successful applications:
 - Non-native users
 - CALL

Perspectives

- Acquisition and integration of formal error models
- O Hybrid approaches
 - Deep/shallow processing
 - Error anticipation/relaxation

Controlled Language Checking: Introduction

□ Application areas

- Authoring support (technical documentation)
- Pre-editing for MT
- Information Management

Users

- Typically large, often multinational companies/organisations/industries
- Factors:
 - short revision cycles
 - multiple source and target languages
 - separation between expert writers and non-expert translators

Goals

- O Clarity
- Consistency (including corporate style)
- Translatability
 - elimination of ambiguous/difficult constructions, as well as jargon
 - homogeneity (for data-based MT and TM)

Controlled Language Checking: History

□ Caterpillar Functional English (in 1960s)

Boeing Simplified English

- Aim: reduce complexity, ambiguity and vagueness
- In-house development of checking technology (BSEC; production use since 1990)
- Simplified English accepted as CL standard for entire industry: AECMA Simplified English

Other CL initiatives

- O Automotive industry
 - General Motors (LANT)
 - Scania
 - BMW (IAI)
- O IT
 - SAP (DFKI/acrolinx)

Controlled Language Checking: Elements of a Controlled Language

□ Terminology

- Consistency
 - Approved/Unapproved variants
- Patents ("Where do you want to go today?™")

□ Style guides

- O Complexity, e.g.
 - sentence length
 - nominal compounds
 - Active/Passive
 - Framing constructions (e.g. German separable particle verbs)
- Ambiguity
 - PP-attachment
 - Word senses
- O Coherence
 - Correspondence between logical/temporal and surface order
- Simplicity/Redundancy/Wordiness

Controlled Language Checking: Technologies

□ Terminology control

- O Term bases
- Morphological analysis (e.g. inflection, compounding)

Terminology mining

- O TF/IDF
- Term collocations

Word sense disambiguation

- \circ one word one meaning
- Medical domain: *joint* (body part) vs. *joint* (#collective)
- Airline domain:

Round the edges of the round cap. If it then turns round and round as it circles round the casing, another round of tests is required. (Farrington 1996)

Controlled Language Checking: Technologies

- □ Grammar checking (see above)
- □ Style checking
 - Enforce adherance to sublanguage
 - CL-style rules often not formally defined
 - example-based
 - vague (Gricean)
 - proprietary
 - O Styles make reference to
 - Document type: User interface dialogues vs. manuals
 - Document structure: Headings, bulleted lists
 - Relative position in document
 - Checking technology can only be complementary (Woicik & Hoard 1997)
 - address more mechanical aspects of a style guide
 - detect potential violations that may require human intervention

Controlled Language Checking: Technologies

□ Two approaches to style checking

- O Grammar-based (e.g., BSEC, SECC)
- Pattern-based (e.g., MultiLint, FLAG)

□ Comparison (Schmidt-Wigger 1998)

- Pattern-based
 MultiLint (grammar)
 MultiLint (style)
- Grammar-based Reca
 BSEC (Wojcik 1990) 89%
 SECC (Adriaens 1994) 87%
- Recall
 Precision

 57%
 81%

 65%
 92%

 Recall
 Precision

 89%
 79%

 87%
 93%

- Caution:
 - Different corpora
 - Different rule sets

