Domain Adaptive IE: Learning Template Filling Rules

Feiyu Xu

feiyu@dfki.de

Language Technology-Lab DFKI, Saarbrücken

Motivations

- Porting to new domains or applications is expensive
- Current technology requires IE experts
 - Expertise difficult to find on the market
 - SME cannot afford IE experts
- Machine learning approaches
 - Domain portability is relatively straightforward
 - System expertise is not required for customization
 - "Data driven" rule acquisition ensures full coverage of examples

Problems

- Training data may not exist, and may be very expensive to acquire
- Large volume of training data may be required
- Changes to specifications may require reannotation of large quantities of training data
- Understanding and control of a domain adaptive system is not always easy for non-experts

Parameters

- Document structure
 - Free text
 - Semi-structured
 - Structured
- Richness of the annotation
 - Shallow NLP
 - Deep NLP
- Complexity of the template filling rules
 - Single slot
 - Multi slot
- Amount of data

- Degree of automation
 - Semi-automatic
 - Supervised
 - Semi-Supervised
 - Unsupervised
- Human interaction/contribution
- Evaluation/validation
 - during learning loop
 - Performance: recall and precision

Learning Methods for Template Filling Rules

- Inductive learning
- Statistical methods
- Bootstrapping techniques
- Active learning

Documents

- Unstructured (Free) Text
 - Regular sentences and paragraphs
 - Linguistic techniques, e.g., NLP
- Structured Text
 - Itemized information
 - Uniform syntactic clues, e.g., table understanding
- Semi-structured Text
 - Ungrammatical, telegraphic (e.g., missing attributes, multi-value attributes, ...)
 - Specialized programs, e.g., wrappers

"Information Extraction" From Free Text

October 14, 2002, 4:00 a.m. PT

For years, <u>Microsoft Corporation CEO</u> <u>Bill Gates</u> railed against the economic philosophy of open-source software with Orwellian fervor, denouncing its communal licensing as a "cancer" that stifled technological innovation.

Today, <u>Microsoft</u> claims to "love" the open-source concept, by which software code is made public to encourage improvement and development by outside programmers. <u>Gates</u> himself says <u>Microsoft</u> will gladly disclose its crown jewels--the coveted code behind the Windows operating system--to select customers.

"We can be open source. We love the concept of shared source," said <u>Bill</u> <u>Veghte</u>, a <u>Microsoft VP</u>. "That's a superimportant shift for us in terms of code access."

Richard Stallman, founder of the Free Software Foundation, countered saying...

NAME	TITLE	ORGANIZATION
Bill Gates	CEO	Microsoft
Bill Veghte	VP	Microsoft
RichardStallma	an founder	Free Soft

IE from Research Papers

@]	A Critical Evaluation of Commensurable Abduction Models for Semantic Interpretation - Peter, Wi - Microsoft Internet Explorer p	<u>_ ×</u>			
Ē	<u>File E</u> dit <u>V</u> iew F <u>a</u> vorites <u>T</u> ools <u>H</u> elp	*			
] <	😂 Back 🔹 🔿 🖉 🙆 🏠 🔯 Search 📾 Favorites 🛛 🖓 History 🛛 🛃 🕶 🖅 🖅 🗐				
] Ag	idress 🙆 http://citeseer.nj.nec.com/peter90critical.html	Links »			
	A Critical Evaluation of Commensurable Abduction Models for Semantic Interpretation (1990) (Correct) (5 citations) Peter Norvig Robert Wilensky University of California, Berkeley Computer Thirteenth International Conference on Computational Linguistics, Volume 3 NEC Research Index Bookmark Context Related Download: <u>norvig.com/coling.ps</u> Cached: <u>PS.gz</u> <u>PS PDF DjVu Image Update</u> From: <u>norvig.com/resume (more)</u> Home: <u>R.Wilensky HPSearch (Correct)</u>	▲ <u>Help</u>			
Al (1 ev w	(Enter summary) Abstract: this paper we critically evaluate three recent abductive interpretation models, those of Charniak and Goldman (1989); Hobbs, Stickel, Martin and Edwards (1988); and Ng and Mooney (1990). These three models add the important property of commensurability: all types of evidence are represented in a common currency that can be compared and combined. While commensurability is a desirable property, and there is a clear need for a way to compare alternate explanations, it appears that a single scalar measure is not enough to account for all types of processing. We present other problems for the abductive approach, and some tentative solutions. (Update)				
Context of citations to this paper: More (break slight modification of the one given in [Ng and Mooney, 1990] The new definition remedies the anomaly reported in [Norvig and Wilensky, 1990] of occasionally preferring spurious interpretations of greater depths. Table 1: Empirical Results Comparing Coherence and					
at C: <u>T</u> <u>A</u> Ir	. costs as probabilities, specifically within the context of using abduction for text interpretation, are discussed in Norvig and Wilensky (1990). The use of oduction in disambiguation is discussed in Kay et al. 1990) We will assume the following: 13) a. Only literals ited by: <u>More</u> <u>'ranslation Mismatch in a Hybrid MT System - Gawron (1999)</u> (Correct) <u>ubduction and Mismatch in Machine Translation - Gawron (1999)</u> (Correct) <u>aterpretation as Abduction - Hobbs, Stickel, Appelt, Martin (1990)</u> (Correct)				
A 0. 0. 0. 2	Critical Decision Support in Time-Critical Domains - Gertner (1995) (Correct) .1: Critiquing: Effective Decision Support in Time-Critical Domains - Gertner (1995) (Correct) .1: Decision Analytic Networks in Artificial Intelligence - Matzkevich, Abramson (1995) (Correct) .1: A Drababilistic Networks of Dradiosters Delense Lin (1992) (Correct) .1: A Drababilistic Networks of Dradiosters Delense Lin (1992) (Correct)	•			

Extracting Job Openings from the Web: Semi-Structured Data

Outline

- Free text
 - Supervised and semi-automatic
 - AutoSlog
 - Semi-Supervised
 - AutoSlog-TS
 - Unsupervised
 - ExDisco
- Semi-structured and unstructured text
 - NLP-based wrapping techniques
 - RAPIER

NLP-based Supervised Approaches

- Input is an annotated corpus
 - Documents with associated templates
- A parser
 - Chunk parser
 - Full sentence parser
- Learning the mapping rules
 - From linguistic constructions to template fillers

AutoSlog (1993)

- Extracting a concept dictionary for template filling
- Full sentence parser
- One slot filler rules
- Domain adaptation performance
 - Before AutoSlog: hand-crafted dictionary
 - two highly skilled graduate students
 - 1500 person-hours
 - AutoSlog:
 - A dictionary for the terrorist domain: 5 person hours
 - 98% performance achievement of the hand-crafted dictionary

Linguistic Patterns

Linguistic Pattern

Example

<subject> passive-verb <subject> active-verb <subject> verb infinitive <subject> auxiliary noun

passive-verb < dobj $>^1$ active-verb <dobj> infinitive <dobj> verb infinitive <dobj> gerund <dobj> noun auxiliary <dobj>

noun prep <np>

<victim> was murdered <perpetrator> bombed cperpetrator> attempted to <u>kill</u> <victim> was victim

killed <victim> bombed <target> to kill <victim> threatened to <u>attack</u> <target> killing <victim> fatality was <victim>

bomb against <target> active-verb prep < np> killed with <instrument> Id: DEV-MUC4-1192 Slot filler: "gilberto molasco" Sentence: (they took 2-year-old gilberto molasco, son of patricio rodriguez, and 17-year-old andres argueta, son of emimesto argueta.)

CONCEPT NODE

Name:victim-active-verb-dobj-tookTrigger:tookVariable Slots:(victim (*DOBJ* 1))Constraints:(class victim *DOBJ*)Constant Slots:(type kidnapping)Enabling Conditions:((active))

A bad concept node definition

Error Sources

 A sentence contains the answer key string but does not contain the event

- The sentence parser delivers wrong results
- A heuristic proposes a wrong conceptual anchor

Training Data

- MUC-4 corpus
- 1500 texts
- 1258 answer keys
- 4780 string fillers
- 1237 concept node definition
- Human in loop for validation to filter out bad and wrong definitions: 5 hours
- 450 concept nodes left after human review

System/Test Set	Recall	Precision	F-measure
MUC-4/TST3	46	56	50.51
AutoSlog/TST3	43	56	48.65
MUC-4/TST4	44	40	41.90
AutoSlog/TST4	39	45	41.79

Comparative Results

Summary

- Advantages
 - Semi-automatic
 - Less human effort

- Disadvantages
 - Human interaction
 - Still very naive approach
 - Need a big amount of annotation
 - Domain adaptation bottelneck is shifted to human annotation
 - No generation of rules
 - One slot filling rule
 - No mechanism for filtering out bad rules

NLP-based ML Approaches

- LIEP (Huffman, 1995)
- PALKA (Kim & Moldovan, 1995)
- HASTEN (Krupka, 1995)
- CRYSTAL (Soderland et al., 1995)

LIEP [1995]

The Parliament building was bombed by **Carlos**.

TARGET-was-bombed-by-PERPETRATOR: noun-group(TRGT, head(isa(physical-target))), noun-group(PERP, head(isa(perpetrator))) verb-group(VG, type(passive), head(bombed)) preposition(PREP, head(by))

subject(TRGT, VG),
post-verbal-prep(VG, PREP),
prep-object(PREP, PERP)
⇒ bombing-event(BE, target(TRGT), agent(PERP))

PALKA [1995]

The Parliament building was bombed by **Carlos**.

FP-structure = MeaningFrame + PhrasalPattern

Meaning Frame:	(BOMBING agent:	ANIMATE
	target:	PHYS-OBJ
	instrument:	PHYS-OBJ
	effect:	STATE)

Phrasal Pattern: ((PHYS-OBJ) was bombed by (PERP))

FP-structure:

(BOMBING target: PHYS-OBJ agent: PERP pattern: ((target) was bombed by (agent))

HASTEN [1995]

The Parliament building was combed by Carlos.

Egraphs
 (SemanticLabel, StructuralElement)

CRYSTAL [1995]

The Parliament building was bombed by Carlos.

Concept type: BUILDING BOMBING

SUBJECT:	Classes include: < PhysicalTarget>	
	Terms include:	BUILDING
	Extract:	target

- VERB: Root: BOMB Mode: passive
- PREPOS-PHRASE:Preposition:BYClasses include:<PersonName>Extract:perpetrator name

A Few Remarks

- Single slot vs. multi.-solt rules
- Semantic constraints
- Exact phrase match

Semi-Supervised Approaches

AutoSlog TS [Riloff, 1996]

Input: pre-classified documents (relevant vs. irrelevant)
NLP as preprocessing: full parser for detecting subject-vobject relationships

Principle

Relevant patterns are patterns occuring more often in the relevant documents

•Output: ranked patterns, but not classified, namely, only the left hand side of a template filling rule

•The dictionary construction process consists of two stages:

pattern generation and

statistical filtering

Manual review of the results

AutoSlog-TS flowchart

Pattern Extraction

The sentence analyzer produces a syntactic analysis for each sentence and identified noun phrases. For each noun phrase, the heuristic rules generate a pattern to extract noun phrase.

<subject> bombed

Relevance Filtering

- the whole text corpus will be processed a second time using the extracted patterns obtained by stage 1.
- Then each pattern will be assigned with a relevance rate based on its occurring frequency in the relevant documents relatively to its occurrence in the total corpus.
- A preferred pattern is the one which occurs more often in the relevant documents.

Statistical Filtering

Relevance Rate:

 $Pr(relevant text \setminus text contains case frame_i) =$

total-freq_i

rel-freq,

 $rel-freq_{i}$, number of instances of *case-frame*_i in the relevant documents total-freq_i total number of instances of *case-frame*_i

Ranking Function:

 $score_i = relevance rate_i * log_2 (frequency_i)$ Pr < 0.5 negatively correlated with the domain

"Тор"

- 1. $\langle subj \rangle$ exploded
- 2. murder of $\langle np \rangle$
- 3. assassination of <np>
- 4. <subj> was killed
- 5. <subj> was kidnapped
- 6. attack on $\langle np \rangle$
- 7. <subj> was injured
- 8. exploded in $\langle np \rangle$
- 9. death of $\langle np \rangle$
- 10. <subj> took_place
- 11. caused <dobj>
- 12. claimed <dobj>

- 14. <subj> occurred
- 15. <subj> was located
- 16. took_place on <np>
- 17. responsibility for $\langle np \rangle$
- 18. occurred on <np>
- 19. was wounded in $\langle np \rangle$
- 20. destroyed <dobj>
- 21. <subj> was murdered
- 22. one of <np>
- 23. <subj> kidnapped
- 24. exploded on <np>
- 25. $\langle subj \rangle$ died
- 13. <subj> was wounded

The Top 25 Extraction Patterns

Empirical Results

•1500 MUC-4 texts

•50% are relevant.

In stage 1, 32,345 unique extraction patterns.

 A user reviewed the top 1970 patterns in about 85 minutes and kept the best 210 patterns.

Evaluation

•AutoSlog and AutoSlog-TS systems return comparable performance.

Conclusion

- Advantages
 - Pioneer approach to automatic learning of extraction patterns
 - Reduce the manual annotation
- Disadvantages
 - Ranking function is too dependent on the occurrence of a pattern, relevant patterns with low frequency can not float to the top
 - Only patterns, not classification

Unsupervised
ExDisco (Yangarber 2001)

- Seed
- Bootstrapping
- Duality/Density Principle for validation of each iteration

Input

- a corpus of unclassified and unannotated documents
- a seed of patterns, e.g.,

subject(company)-verb(appoint)-object(person)

NLP as Preprocessing

- full parser for detecting subject-v-object relationships
 - NE recognition
 - Functional Dependency Grammar (FDG) formalism (Tapannaien & Järvinen, 1997)

Duality/Density Principle (boostrapping)

• Density:

Relevant documents contain more relevant patterns

• Duality:

- documents that are relevant to the scenario are strong indicators of good patterns
- good patterns are indicators of relevant documents

Algorithm

- Given:
 - a large corpus of un-annotated and un-classified documents
 - a trusted set of scenario patterns, initially chosen ad hoc by the user, the seed. Normally is the seed relatively small, two or three
 - (possibly empty) set of concept classes
- Partition
 - applying seed to the documents and divide them into relevant and irrelevant documents
- Search for new candidate patterns:
 - automatic convert each sentence into a set of candidate patterns.
 - choose those patterns which are strongly distributed in the relevant documents
 - Find new concepts
- User feedback
- Repeat

Pattern Ranking

Score(P)=|H∩R| _____.LOG (|H∩R|) ______

Evaluation of Event Extraction

Pattern Base	Recall	Precision	F
Seed	27	74	39.58
ExDisco	52	72	60.16
Union	57	73	63.56
Manual-MUC	47	70	56.40
Manual-NOW	56	75	64.04

ExDisco

- Advantages
 - Unsupervised
 - Multi-slot template filler rules
- Disadvantages
 - Only subject-verb-object patterns, local patterns are ignored
 - No generalization of pattern rules (see inductive learning)
 - Collocations are not taken into account, e.g., PN take responsibility of Company
- Evaluation methods
 - Event extraction: integration of patterns into IE system and test recall and precision
 - Qualitative observation: manual evaluation
 - Document filtering: using ExDisco as document classifier and document retrieval system

Relational learning and Inductive Logic Programming (ILP)

 Allow induction over structured examples that can include first-order logical representations and unbounded data structures

Semi-Structured and Un-Structured Documents

RAPIER [Califf, 1998]

- Inductive Logic Programming
- Extraction Rules
 - Syntactic information
 - Semantic information
- Advantage
 - Efficient learning (bottom-up)
- Drawback
 - Single-slot extraction

RAPIER [Califf, 1998]

- Uses relational learning to construct unbounded patternmatch rules, given a database of texts and filled templates
- Primarily consists of a bottom-up search
- Employs limited syntactic and semantic information
- Learn rules for the complete IE task

Filled template of RAPIER

Posting from Newsgroup

Telecommunications. SOLARIS Systems Administrator. 38-44K. Immediate need

Leading telecommunications firm in need of an energetic individual to fill the following position in the Atlanta office:

SOLARIS SYSTEMS ADMINISTRATOR Salary: 38-44K with full benefits Location: Atlanta Georgia, no relocation assistance provided

Filled Template

computer_science_job
title: SOLARIS Systems Administrator
salary: 38-44K
state: Georgia
city: Atlanta
platform: SOLARIS
area: telecommunications

Figure 1: Sample Message and Filled Template

RAPIER's rule representation

- Indexed by template name and slot name
- Consists of three parts:
 - 1. A pre-filler pattern
 - 2. Filler pattern (matches the actual slot)
 - 3. Post-filler

Pattern

- Pattern item: matches exactly one word
- Pattern list: has a maximum length N and matches 0...N words.
- Must satisfy a set of constraints
 - 1. Specific word, POS, Semantic class
 - 2. Disjunctive lists

RAPIER Rule

ORIGINAL DOCUMENT: Al. C Programmer. 38-44K. Leading Al firm in need of an energetic individual to fill the following position: EXTRACTED DATA: computer-science-job title: C Programmer salary: 38-44K area: AI

AREA extraction pattern:Pre-filler pattern:word: leadingFiller pattern:list: len: 2tags: [nn, nns]Post-filler pattern:word: [firm, company]

RAPIER'S Learning Algorithm

- Begins with a most specific definition and compresses it by replacing with more general ones
- Attempts to compress the rules for each slot
- Preferring more specific rules

Implementation

- Least general generalization (LGG)
- Starts with rules containing only generalizations of the filler patterns
- Employs top-down beam search for pre and post fillers
- Rules are ordered using an information gain metric and weighted by the size of the rule (preferring smaller rules)

Example

Located in Atlanta, Georgia. Offices in Kansas City, Missouri

Pre-filler: Filler: Post-filler: 1) word: located 1) word: atlanta 1) word: , tag: vbn tag: nnp tag: , 2) word: in 2) word: georgia tag: in tag: nnp word: . tag: . and Pre-filler: Filler: Post-filler: 1) word: offices 1) word: kansas 1) word: , tag: nns tag: nnp tag: , word: in 2) word: city word: missouri tag: in tag: nnp tag: nnp word: . tag: .

Example (cont)

Pre-filler:	Filler:	Post-filler:
	1) list: max length: 2 word: {atlanta, ka tag: nnp	nsas, city}
and Pre-filler:	Filler: 1) list: max length: 2 tag: nnp	Post-filler:
Pre-filler: 1) word: in tag: in	Filler: 1) list: max length: word: {atlanta, kansas, city} tag: nnp	Post-filler: 2 1) word: , tag: ,
and Pre-filler: 1) word: in tag: in	Filler: 1) list: max length: tag: nnp	Post-filler: 2 1) word: , tag: ,

Example (cont)

Final best rule:

Pre-filler: Filler: Post-filler: 1) word: in 1) list: max length: 2 1) word: , tag: in tag: nnp tag: , 2) tag: nnp

semantic: state

Experimental Evaluation

- A set of 300 computer-related job posting from austin.jobs
- A set of 485 seminar announcements from CMU.
- Three different versions of RAPIER were tested

1.words, POS tags, semantic classes

2. words, POS tags

3. words

Performance on job postings

Results for seminar announcement task

System	$_{\rm sti}$	me	eti	me	lo	С	spea	ıker
	Prec	Rec	Prec	Rec	Prec	Rec	Prec	Rec
Rapier	93.9	92.9	95.8	94.6	91.0	60.5	80.9	39.4
RAP-WT	96.5	95.3	94.9	94.4	91.0	61.5	79.0	40.0
Rap-w	96.5	95.9	96.8	96.6	90.0	54.8	76.9	29.1
NAIBAY	98.2	98.2	49.5	95.7	57.3	58.8	34.5	25.6
SRV	98.6	98.4	67.3	92.6	74.5	70.1	54.4	58.4
Whisk	86.2	100.0	85.0	87.2	83.6	55.4	52.6	11.1
WH-PR	96.2	100.0	89.5	87.2	93.8	36.1	0.0	0.0

Conclusion

- Pros
 - Have the potential to help automate the development process of IE systems.
 - Work well in locating specific data in newsgroup messages
 - Identify potential slot fillers and their surrounding context with limited syntactic and semantic information
 - Learn rules from relatively small sets of examples in some specific domain
- Cons
 - single slot
 - regular expression
 - Unknown performances for more complicated situations

CRYSTAL + Webfoot [1997]

SEGMENTED I <segm> field1 <segm> field1 <segm> field1</segm></segm></segm>	DOCUMENT: : <head> LA Forecast </head> : MONDAY field2: CLOUDY : .TUESDAY field2. SUNNY
Concept type: FO	DRECAST
Constraints:	
FIELD:	Classes include: <day></day>
	Terms include: ".", "…"
	Extract: day
FIELD:	Classes include: <weather condition=""></weather>
	Extract: conditions

WHISK [1999]

The Parliament building was bombed by Carlos.

WHISK Rule:
 *(*PhyObj*)*@passive *F `bombed' * {PP `by'
 *F (*Person*)}

Context-based patterns

Snowball

(E. Agichtein and E. Eskin and L. Gravano, 2001)

- Input
 - a corpus of unclassified and unannotated documents
 - a seed of related terms, e.g., *Miscrosoft, Redmond* (head-quarter of a company)
- NLP as preprocessing: named entity recognition
 - MITRE Cooperation's Alembic Workbench
- Pattern: a tuple of surface strings around the related named entities
 - <left, tag1, middle, tag2, right>
- Duality Principle (boostrapping)
 - Relevance of a pattern is dependent on the relevance of extracted relations
 - Relevance of an extracted relation is dependent on the relevance of the pattern
- Output: ranked pattern labelled by a specific relation
- Advantages
 - Unsupervised, open-domain
- Disadvantages
 - Only surface string will be considered
 - Not applicable and scalable to related terms belong to diffent relationships
 - No disambiguation solution
- Evaluation
 - Accurracy: check the first 100 patterns
 - IR-based evaluation: Recall/Precision, not all relevant relations from a single document

relevant relationships

- Open-domain information extraction (Surdeanu & Harabagiu, 2000)
 - The domain of interest results from several interactions with the users
 - Successful IE cannot be achieved only by automatically learning of patterns
 - We need reliably recognize
 - reference to the same entities
 - events of interest
 - disambiguation of syntactic and semantic information pertaining to the topic of interest
- Acquisition of patterns for knowledge-intensive information extraction (Harabagiu & Maiorano, 2000)
 - WordNet for extracting more domain-relevant and related concepts, using collocations for sense disambiguation
 - Assigning collocations as trigger words based on wordNet, e.g., take the helm,
 - "helm" pertains to "position of leadership"

(Harabagiu & Maiorano, 2000)

- Combining lexico-semantic information available from WordNet database with collocating data extracted from training corpora
 - Building ontologies for domain patterns
 - Supervised
- Acquisition of domain knowledge for IE

- Creation of semantic space that models domain via WordNet concepts and relevant connections between them
 - Morphological connections: nominalization (e.g., *lead* vs. *leader*)
 - Relations:
 - Thematic relations: <organization-agent, {fire, dismiss}, person>
 - Subsumption: {president} is->a {executive, executive director}
 - Contextual relations: entail, antonym, compose
 - Classification and expansion of collocational relationships: (e.g., <u>take office</u> is a hyponym of <u>succeed</u>, <u>take</u> can use {position, place, post, slot}
- Scanning the phrasal parses of texts for collocating domain concepts (pattern building)
- Patterns are classified against the WordNet hierarchies (induction)
- Advantages
 - Big coverage of different variant relations needed by a domain
 - Necessary knowledge for coreference resolution of nominal entities and event entities (template merging)
- Disadvantages
 - Supervised learning
 - Performance is strongly dependent on the coverage of WordNet
 - Methods are not very transparent and appear very complex, too much heuristics

Web Documents

Web IE Tools (main technique used)

- Wrapper languages (TSIMMIS, Web-OQL)
- HTML-aware (X4F, XWRAP, RoadRunner, Lixto)
- NLP-based (RAPIER, SRV, WHISK)
- Inductive learning (WIEN, SoftMealy, Stalker)
- Modeling-based (NoDoSE, DEByE)
- Ontology-based (BYU ontology)

SRV [1998]

- Relational Algorithm (top-down)
- Features
 - Simple features (e.g., length, character type, ...)
 - Relational features (e.g., next-token, ...)
- Advantages
 - Expressive rule representation
- Drawbacks
 - Single-slot rule generation
 - Large-volume of training data

SRV Rule

DOCUMENT-1: ... to purchase 4.5 mln Trilogy shares at ... DOCUMENT-2: ... acquire another 2.4 mln Roach shares ...

Acquisition: - length(< 2),

some(?A [] capitalized true), some(?A [next-token] all-lower-case true), some(?A [right-AN] wn-word 'stock').

WHISK [1998]

- Covering Algorithm (top-down)
- Advantages
 - Learn multi-slot extraction rules
 - Handle various order of items-to-be-extracted
 - Handle document types from free text to structured text
- Drawbacks
 - Must see all the permutations of items
 - Less expressive feature set
 - Need large volume of training data
WHISK Rule

DOCUMENT: Capitol Hill- 1 br twnhme. D/W W/D. Pkg incl \$675. 3BR upper flr no gar. \$995. (206) 999-9999
 EXTRACTED DATA: <Bedrooms: 1 Price: 675> <Bedrooms: 3 Price: 995>

Extraction rule: Output: * (<<u>Digit</u>>) 'BR' * '\$' (<<u>Nmb</u>>) Rental {Bedrooms @1} {Price @2}

WIEN [1997]

Assumes

- Items are always in fixed, known order
- Introduces several types of wrappers
- Advantages
 - Fast to learn and extract
- Drawbacks
 - Can not handle permutations and missing items
 - Must label entire pages
 - Does not use semantic classes

WIEN Rule

D1: 1.Joe's: (313)323-5545 2.Li's: (406)545-2020 D2: 1.KFC: 818-224-4000 2.Rome: (656)987-1212

 WIEN rule:
 * '.' (*) ':' * '(' (*) ')'

 Output:
 Restaurant {Name @1} {AreaCode @2}

SoftMealy [1998]

- Learns a transducer
- Advantages
 - Learns order of items
 - Allows item permutations and missing items
 - Allows both the use of semantic classes and disjunctions
- Drawbacks
 - Must see all possible permutations
 - Can not use delimiters that do not immediately precede and follow the relevant items

SoftMealy Rule

D1: 1.Joe's: (313)323-5545 2.Li's: (406)545-2020 D2: 1.KFC: 818-224-4000 2.Rome: (656)987-1212 SoftMeaky rule: * '.' (*) EITHER ':' (Nmb) '-' OR ':' * '(' (Nmb) ')'

Output: Restaurant {Name @1} {AreaCode @2}

STALKER [1998,1999,2001]

- Hierarchical Information Extraction
- Embedded Catalog Tree (ECT) Formalism
- Advantages
 - Extracts nested data
 - Allows item permutations and missing items
 - Need not see all of the permutations
 - One hard-to-extract item does not affect others
- Drawbacks
 - Does not exploit item order

STALKER Rule

- Embedded Catalog Tree:
 - Document ::= Restaurant LIST(City) City ::= CityName LIST(Location) Location ::= Number Street LIST(Phone) Phone ::= AreaCode PhoneNumber

Restaurant extraction rule: LIST(City) extraction rule: LIST(City) iteration rule: CityName extraction rule:

* 'Name :' (*) '
'
* '
' * '
' * '
' (*) '<hr>'
* '-' (*) ''
* (*) ':'

Expansion)

•Input

- Web sites (24 million web pages in http://google.stanford.edu, 147 gigabytes)
- a seed of relations, e.g., author-title-pair of a book
- •Pattern: a tuple of with regular expressions
 - <order, urlprefix, prefix, middle, suffix>
 - a text pattern: <*LI*><*B*>*title*</*B*> by author (
 - a url pattern: www.sff.net/locus/c.*
- Duality Principle (boostrapping)
 - Patterns and relations
- Pattern generation (url adaptive patterns)
 - a text pattern is associated with a url pattern
 - prefix and suffix are generated based on the longest match of all instances
- Constraints: patterns should meet specificity requirement
- •Advantages
 - -Unsupervised, open-domain
- •Disadvantages
 - -Only surface string will be considered
 - -Not applicable and scalable to related terms belong to diffent relationships
 - -No disambiguation solution

• URLS

Summary of Qualitative Analysis

Tools		Degree of Automation	Support for Complex Objects	Ease of Use	XML Output	Support for Non-HTML Sources	Type of Page Contents
Languages	Minerva	Manual	Coding	+	Yes	Partial	SD
	TSIMMIS	Manual	Coding	+	No	Partial	SD
	Web-OQL	Manual	Coding	+	No	None	SD
HTML-aware	W4F	Semi-Automatic	Coding	++	Yes	None	ŞD
	XWRAP	Automatic	Yes	++++	Yes	None	SD
	RoadRunner	Automatic	Yes	++++	No	None	SD
NLP-based	WHISK	Semi-Automatic	No	++	No	Full	ŞТ
	RAPIER	Semi-Automatic	No	++	No	Full	ST
	ŞRV	Semi-Automatic	No	++	No	Full	ST
Induction	WIEN	Semi-Automatic	No	++	No	Partial	SD
	SoftMealy	Semi-Automatic	Partial	++	No	Partial	SD
	STALKER	Semi-Automatic	Yes	++	No	Partial	ŞD
Modeling-based	NoDoSE	Semi-Automatic	Yes	+++	Yes	Partial	ŞD
	DEByE	Semi-Automatic	Yes	+++	Yes	Partial	ŞD
Ontology-based	BYU	Manual	Coding	++	No	Full	ST/SD

Graphical Perspective of Qualitative Analysis

Name	Struc_ ture	Semi	Free	Single- slot	Multi- slot	Missing items	Permuta_ tions	Nested_ data	Resilient
WIEN	Х			Х	Х				
SoftMea ly	Х	Х		Х	Х	Х	Х*		
STALKE R	Х	Х		Х	*	Х	Х	Х	
RAPIER	Х	Х	?	Х		Х	Х		?
SRV	Х	Х	?	Х		Х	Х		?
WHISK	Х	Х	Х	Х	Х	Х	X*		?
AutoSlo g			Х	Х		Х			Х
ROAD_ RUNNER	Х	Х			Х	X		X	
BYU Onto	Х	Х	?	Х	Х	Х	Х	Х	Х

X means the information extraction system has the capability; X* means the information extraction system has the ability as long as the training corpus can accommodate the required training data; ? Shows that the systems can has the ability in somewhat degree; * means that the extraction pattern itself doesn't show the ability, but the overall system has the capability.

Dealing with Large Amount Data

Free Text
Snowball
Web
DIPRE

Web Documents

- Semi-structured and Unstructured
 - RAPIER (E. Califf, 1997)
 - SRV (D. Freitag, 1998)
 - WHISK (S. Soderland, 1998)
- Semi-structured and Structured
 - WIEN (N. Kushmerick, 1997)
 - SoftMealy (C-H. Hsu, 1998)
 - STALKER (I. Muslea, S. Minton, C. Knoblock, 1998)

References

- 1. N. Kushmerick. <u>Wrapper induction: Efficiency and Expressiveness</u>, Artificial Intelligence, 2000.
- 2. I. Muslea. <u>Extraction Patterns for Information Extraction</u>. AAAI-99 Workshop on Machine Learning for Information Extraction.
- Riloff, E. and R. Jones. <u>Learning Dictionaries for Information Extraction</u> <u>by Multi-Level Bootstrapping.</u> In Proceedings of the Sixteenth National Conference on Artificial Intelligence (AAAI-99), 1999, pp. 474-479.
- R. Yangarber, R. Grishman, P. Tapanainen and S. Huttunen. <u>Automatic Acquisition of Domain Knowledge for Information Extraction.</u> In Proceedings of the 18th International Conference on Computational Linguistics: <u>COLING-2000</u>, Saarbrücken.

http://www.dfki.de/~neumann/ie-esslli04.html