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Abstract
We augment an existing TAG-based in-
cremental syntactic formalism, PLTAG,
with a semantic component designed to
support the simultaneous modeling ef-
fects of thematic fit as well as syntactic
and semantic predictions. PLTAG is a
psycholinguistically-motivated formalism
which extends the standard TAG opera-
tions with a prediction and verification
mechanism and has experimental support
as a model of syntactic processing diffi-
culty. We focus on the problem of for-
mally modelling semantic role prediction
in the context of an incremental parse
and describe a flexible neo-Davidsonian
formalism and composition procedure to
accompany a PLTAG parse. To this
end, we also provide a means of aug-
menting the PLTAG lexicon with seman-
tic annotation. To illustrate this, we run
through an experimentally-relevant model
case, wherein the resolution of semantic
role ambiguities influences the resolution
of syntactic ambiguities and vice versa.

1 Introduction

PLTAG (PsychoLinguistically-motivated TAG,
Demberg and Keller, 2008; Demberg et al., 2014)
is a variant of Tree-Adjoining Grammar (TAG)
which is designed to allow the construction of
TAG parsers that enforce strict incrementality and
full connectedness through (1) constraints on the
order of operations, (2) a new type of unlexical-
ized tree, so-called prediction trees, and (3) a veri-
fication mechanism that matches up and extends
predicted structures with later evidence. Psy-
cholinguistic evaluation has shown that PLTAG
operations can be used to predict data from eye-
tracking experiments, lending this syntactic for-
malism greater psycholinguistic support.

Syntax, however, may not just be the skeleton of
a linguistic construction that bears semantic con-
tent: there is some evidence that syntactic struc-
ture and semantic plausibility interact with each
other. In a strongly interactive view, we would ex-
pect that semantic plausibility could directly affect
the syntactic expectations. Consider the sentences:

(1) a. The woman slid the butter to the man.
b. The woman slid the man the butter.

The ditransitive verb “to slide” provides three
roles for participants in the predicate: agent, pa-
tient, and recipient. In both cases, “the woman”
fills the agent role, “the butter” the patient, and
“the man” the recipient. However, they do not gen-
erally fill all roles equally well. English-speakers
have the intuition that “the butter” should neither
be an agent nor a recipient under normal circum-
stances. Likewise, “the man” is not a typical pa-
tient in this situation. If there is a psycholinguis-
tic effect of semantic plausibility, we would ex-
pect that an incomplete sentence like “The woman
slid the butter” would generate an expectation in
the listener of a PO construction (rather than DO)
with preposition “to”, as well as an expectation of
a noun phrase and an expectation that that noun
phrase would belong to the class of entities that
are plausible recipients for entities that are slid.

If this is the case, then there is not only a syntac-
tic expectation at this point but a semantic expecta-
tion that is in turn informed by the syntactic struc-
ture and semantic content up to that point. Con-
structing a model that is formally rich, psycholin-
guistically plausible, and empirically robust re-
quires making design decisions about the specific
relationship between syntax and semantics and the
overall level of formal articulation on which the
statistical model rests. For PLTAG, we are inter-
ested in preserving as many of its syntactic charac-
teristics as are necessary to model the phenomena
that it already does (Demberg and Keller, 2009).



In the rest of this paper, we therefore present a
semantic augmentation of PLTAG that is based on
neo-Davidsonian event semantics and is capable
of supporting incrementality and prediction.

2 Psycholinguistic background

Does thematic fit dynamically influence the choice
of preferred syntactic structures, does it shape pre-
dictions of upcoming semantic sorts, and can we
measure this experimentally?

A classic study (Altmann and Kamide, 1999)
about the influence of thematic fit on predictions
showed that listeners can predict the complement
of a verb based on its selectional restrictions. Par-
ticipants heard sentences such as:

(2) a. The boy will eat the cake.
b. The boy will move the cake.

while viewing images that depicted sets of rele-
vant objects, in this example, a cake, a train set,
a ball, and a model car. Altmann and Kamide
(1999) monitored participants’ eye-movements
while they heard the sentences and found an in-
creased number of looks to the cake during the
word eat compared the control condition, i.e., dur-
ing the word move (only the cake is edible, but
all depicted objects are movable). This indicates
that selectional preference information provided
by the verb is not only used as soon as it is avail-
able (i.e., incremental processing takes place), but
this information also triggers the prediction of up-
coming arguments of the verb. Subsequent work
has demonstrated that this is not a simple associ-
ation effect of eat and the edible item cake, but
that people assign syntactic roles rapidly based on
case marking and that missing obligatory thematic
role fillers are predicted; in a German visual world
study, Kamide et al. (2003a) presented participants
with a scene containing a cabbage, a hare, a fox
and a distractor object while they heard sentences
like

(3) a. Der Hase frisst gleich den Kohl.
(The harenom will eat soon the cabbageacc.)

b. Den Hasen frisst gleich der Fuchs.”
(The hareacc will eat soon the foxnom.)

They found that, during the verb-adverb region,
people looked more to the cabbage in the first con-
dition and correctly anticipated the fox in the sec-
ond condition. This means that they were able to
correctly anticipate the filler of the missing the-
matic role. Kamide et al. (2003b) furthermore

showed that role prediction is not only restricted
to the immediately-following grammatical object,
but that goals as in The woman slid the butter to
the man are also anticipated.

Thematic fit furthermore seems to interact with
syntactic structure. Consider the sentences in (4),
which are locally ambiguous with respect to a
main clause interpretation or a reduced relative
clause.

(4) a. The doctor sent for the patient arrived.
b. The flowers sent for the patient arrived.

Comprehenders incur decreased processing diffi-
culty in sentences like (4-b) compared to (4-a),
due to flowers not being a good thematic fit for
the agent role of sending (Steedman, 2000).

Taken together, the experimental evidence sug-
gests that semantic information in the form of
thematic fit can influence the syntactic structures
maintained by the comprehender and that peo-
ple do generate anticipations not only based on
the syntactic requirements of a sentence, but also
in terms of thematic roles. While there is evi-
dence that both syntactic and semantic process-
ing is rapid and incremental, there remain, how-
ever, some open questions on how closely syn-
tactic and semantic processing are integrated with
each other. The architecture suggested here mod-
els the parallel, highly incremental construction of
syntactic and semantic structure, but leaves open
to exploration the question of how quickly and
strongly they interact with each other. Note that
with the present architecture, thematic fit would
only be calculated for word pairs which stand in
a possible syntactic relation. The syntax thus ex-
erts strong constraints on which plausibilities are
considered. Our example in section 6.2 illustrates
how even a tight form of direct interaction between
syntax and semantics can be modelled.

3 Relation to previous work on joint
syntactic-semantic models

Previous attempts have been made to combine
the likelihood of syntactic structure and seman-
tic plausibility estimates into one model for pre-
dicting human processing difficulty (Padó et al.,
2009; Jurafsky, 2002). Padó et al. (2009) pre-
dict increased difficulty when the preferred syn-
tactic analysis is incompatible with the analysis
that would have the best thematic fit. They inte-
grate syntactic and semantic models as a weighted
combination of plausibility scores. The syntactic



and semantic models are computed to some extent
independently of one another, and then the result
is adjusted by a set of functions that take into ac-
count conflicts between the models. In relation to
the approach proposed here, it is also important
to note that the semantic components in (Padó et
al., 2009; Jurafsky, 2002) are limited to semantic
role information, while the architecture proposed
in this paper can build complete semantic expres-
sions for a sentence. Furthermore, these models
do not model the prediction and verification pro-
cess (in particular, they do not make any seman-
tic role predictions of upcoming input) which has
been observed in human language processing.

Mitchell et al. (2010) propose an integrated
measure of syntactic and semantic surprisal as a
model of processing difficulty, and show that the
semantic component improves modelling results
over a syntax-only model. However, the syntactic
and semantic surprisal components are only very
loosely integrated with one another, as the seman-
tic model is a distributional bag-of-words model
which does not take syntax into account.

Finally, the syntactic model underlying (Padó et
al., 2009; Mitchell et al., 2010) is an incremental
top-down PCFG parser (Roark, 2001), which due
to its parsing strategy fails to predict human pro-
cessing difficulty that arises in certain cases, such
as for center embedding (Thompson et al., 1991;
Resnik, 1992). Using the PLTAG parsing model is
thus more psycholinguistically adequate.

3.1 Towards a broad-coverage integration of
syntax and semantics

The current paper does not propose a new model
of sentence processing difficulty, but rather ex-
plores the formal architecture and mechanism nec-
essary to enable the future implementation of an
integrated syntactic-semantic model. A syntax-
informed semantic surprisal component imple-
mented using distributional semantics could use
the semantic expressions generated during the
PLTAG semantics construction to determine what
words (in which relationships to the current word)
from the previous context to condition on for cal-
culating semantic surprisal.

4 PLTAG syntax

PLTAG uses the standard operations of TAG: sub-
stitution and adjunction. The order in which they
are applied during a parse is constrained by in-

crementality. This also implies that, in addition
to the standard operations, there are reverse Up
versions of these operations where the prefix tree
is substituted or adjoined into a new elementary
tree (see figure 4). In order to achieve strict incre-
mentality and full connectedness at the same time
while still using linguistically motivated elemen-
tary trees, PLTAG has an additional type of (usu-
ally) unlexicalized elementary tree called predic-
tion trees. Each node in a prediction tree is marked
with upper and/or lower indices k

k to indicate its
predictive status. Examples for prediction trees
are given at the right hand side of figure 5b. The
availability of prediction trees enable a sentence
starting with “The thief quickly” to integrate both
the NP (“The thief”) and the ADVP (“quickly”)
into the derivation even though neither type of el-
ementary tree can be substituted or adjoined to the
other—the system predicts an S tree to which both
can be attached, but no specific verb head. Pre-
diction markers can be removed from nodes via
the verification operation, which makes sure that
predicted structure is matched against actually ob-
served evidence from the input string. For the ex-
ample above, the verb ran in “The thief quickly
ran” verifies the predicted verb structure. In fig-
ures 5c through 5e, we also provide an example of
prediction and verification as part of the demon-
stration of our semantic framework. Other foun-
dational work on PLTAG (Demberg-Winterfors,
2010) contains more detailed description.

5 Neo-Davidsonian semantics

Davidsonian semantics organizes the representa-
tion of predicates around existentially-quantified
event variables (e). Sentences are therefore treated
as descriptions of these events, leading to a less
recursive representation where predicates are not
deeply embedded inside one another. Highly
recursive representations can be incrementality-
unfriendly, potentially requiring complex infer-
ence rules to “undo” recursive structures if rele-
vant information arrives later in the sentence.

Neo-Davidsonian semantics (Parsons, 1990;
Hunter, 2009) is an extension of Davidsonian
semantics wherein the semantic roles are also
separated out into their own first-order predi-
cates, rather than being fixed arguments of the
main predicate of the verb. This enables a sin-
gle verb predicate to correspond to multiple pos-
sible arrangements of role predicates, also an



incrementality-friendly characteristic1. The Neo-
Davidsonian representation allows us separate the
semantic prediction of a role from its syntactic ful-
fillment, permitting the type of flexible framework
we are proposing in this paper.

We adopt a neo-Davidsonian approach to se-
mantics by a formalism that bears similarity to ex-
isting frameworks such as (R)MRS (Robust Min-
imal Recursion Semantics) (Copestake, 2007).
However, this paper is intended to explore what
architecture is minimally required to augment the
PLTAG syntactic framework, so we do not adopt
these existing frameworks wholesale. Our ex-
amples such as figures 4, 5d, and several others
demonstrate how this looks in practice.

6 Semantics for PLTAG

6.1 Semantic augmentation for the lexicon

Constructing the lexicon for a semantically aug-
mented PLTAG uses a process based on the one
for “purely syntactic” PLTAG. The PLTAG lex-
icon is extracted automatically from the PLTAG
treebank, which has been derived from the Penn
Treebank using heuristics for binarizing flat struc-
tures as well as additional noun phrase annotations
(Vadas and Curran, 2007), PropBank (Palmer et
al., 2003), and a slightly modified version of
the head percolation table of Magerman (1994).
PLTAG trees in the treebank are annotated with
syntactic headedness information as well as infor-
mation that allows one to distinguish arguments
and modifiers.

Given the PLTAG treebank, we extract the
canonical lexicon using well-established ap-
proaches from the LTAG literature (in particular
(Xia et al., 2000): we traverse the converted tree
from each leaf up towards the root, as long as the
parental node is the head child of its parent. If a
subtree is not the head child of its parent, we ex-
tract it as an elementary tree and proceed in this
way for each word of the converted tree. Given the
argument/modifier distinction, we then create sub-
stitution nodes in the parent tree for arguments or
a root and foot node in the child tree for modifiers.
Prediction trees are extracted automatically by cal-
culating the minimal amount of structure needed
to connect each word into a structure including all
previous words of the sentence2. The parts of this

1Consider the optionality of the agent role in passive sen-
tences, where the “by-phrase” may or may not appear.

2The reader is referred to (Demberg-Winterfors, 2010;
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{∃e&? = e}

NP↓
{Q1x1

ARG0(e, x1)}
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{e}
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{Q2x2

ARG1(e, x2)}
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&? = x1

&? = Q1}
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{e}

V
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NP↓
{Q2x2

ARG1(e, x2)}

Figure 1: Verbal elementary trees extracted from
example sentence Pete likes sugary drinks includ-
ing alcoholic ones.

minimally-needed connecting syntactic structure
which belong to heads to the right of the current
word are stored in the lexicon as prediction trees,
c.f. right hand side of figure 5b.

Since Propbank is used in the construction pro-
cess of the PLTAG treebank, we can straightfor-
wardly display the semantic role annotation on the
tree and the extracted lexicon, with the exception
that we display role annotations for PPs on their
NP child. For arguments, annotations are retained
on the substitution node in the parental tree, while
for modifiers, the role annotation is displayed on
the foot node of the auxiliary tree, as shown for the
verbal trees extracted from the sentence Pete likes
sugary drinks including alcoholic ones in Figure
1. PropBank assigns two roles to the NP node
above sugary drinks (it is the ARG1 of likes and
the ARG0 of including), but we can correctly tease
apart these annotations in the lexical extraction
process using the syntactic annotation and argu-
ment/modifier distinction.

Using the same procedure, prediction trees are
annotated with semantic roles. It can then happen
that one form of a prediction tree is annotated with
different syntactic roles, hence introducing some
additional ambiguity into the lexicon. For exam-
ple, the NP substitution node in subject position of
the prediction tree rooted in Sk in figure 5b could
be an ARG0 for some verbs which can verify this
tree and an ARG1 for others.

PLTAG elementary trees can contain one or
more lexemes, where the first lexeme is the el-
ementary tree’s main anchor, and all further lex-
emes are predicted. In earlier PLTAG extractions,
elementary trees with several lexemes were used
for particle verbs like show up and some hand-
coded constructions in which the first part is pre-
dictive of the second part, such as either . . . or or
both . . . and. Here we extend this set of trees with

Demberg et al., 2014) for full details of the PLTAG conver-
sion and syntactic part of the lexicon extraction process.



more than one lexeme to verbs with subcatego-
rized PPs, as shown, for example, in the second
lexicon entry of slid in figure 5a. Note the differ-
ence to the lexicon entry of optional PPs in figure
5b as in on Sunday. Furthermore,
• All elementary trees which have a role anno-

tation in PropBank also have a correspond-
ing annotation ∃e on their root node that
represents the existentially-quantified neo-
Davidsonian event variable for that predicate,
see fig. 1.
• The event variables and entity variables on an

elementary tree are available for binding on
the path from the anchor3 of the elementary
tree to the root node.
• Every role annotation on a node is in the form

of a predicate ARGn(e, x), where e is the
event variable, and x is an entity variable to
which the role is conferred.
• Every role annotation is prefixed with a vari-

able binding Qx, where Q is a higher-order
variable that represents an unknown quanti-
fier. This ensures that all variables are bound
if a role appears before its filler.
• Every elementary tree for an open-class word

has a head with corresponding predicate. For
example, “butter” has a predicate Butter(x).
• Prediction trees for open lexical classes (such

as NPs) have a head with a (x) predicate.
• Every nominal elementary tree has a Qx at

the root node so that the entity variable that
is the argument to the predicate on the head
is bound. The Qx is on the root node so that
our semantic processing procedure for substi-
tutions and adjunctions (described in the next
section) can unify the entity variable x with
variables on higher trees.

For PPs, we obtain role annotations from Prop-
Bank and NomBank. Other closed-class syntactic
types such as pronouns have appropriately-
selected quantifier constants and predicates
(e.g. “someone” would be represented as
∃xPerson(x)&? = ∃&? = x, see next paragraph
for the use of question marks). Determiners are
merely annotated with a quantifier “constant”
symbol and no variables or predicates.

Then we require a type of additional annota-
tion to which we refer as a “variable assignment
statement”, which we use in our syntactic com-

3Lowest node on the path to where the anchor would be
in a prediction tree which does not have a lexical anchor.

bination process. These statements are written
? = v, where v is either a quantifier variable
(Q) or constant (e.g. ∃) or an entity variable (x).
These statements represent the possibility that an
incoming tree might have a variable v that could
have the same binding as one already in the pre-
fix tree. Variable assignment statements occur on
root nodes or foot nodes, except where there is a
descendent DT subsitution node, which receives
an additional ? = Q statement. The type of vari-
able assignment statement (event, entity or quan-
tifier) depends on the root node type (entity type
like NP or N vs. event type like S or VP), as shown
in figure 1. The next section describes the use of
these statements in semantic parsing. Note that
variable assignment statements need not be rep-
resented explicitly in an implementation, as reas-
signing variables can be done via references or
other data structures. We use them as a represen-
tational and illustrative convenience here.

6.2 Semantic parsing procedure

We integrate semantics into the overall process of
PLTAG parsing by the rules in figures 2 and 3. In
addition, we provide a more procedural descrip-
tion here. At the highest level, a step in an incre-
mental parse follows this pattern:

1. On scanning a new word or doing a predic-
tion step, the PLTAG statistical model selects
a tree from the lexicon, an operation (substi-
tion, adjunction, verification), and a position
in the prefix tree at which to insert the tree (or
none, if this is the first word).

2. All the nodes of the incoming tree are vis-
ited by the visit operation, and their semantic
content is appended as conjuncts to the out-
put semantic expression.

3. The operation of attaching the new tree into
the derived tree is performed (pltagOp):
(a) Variable assignment statements are

emitted and appended to the semantic
output expression according to the
rules in figure 3, as well as to the
semantic expression at the syntactic
node at which the integration occurs.
For verification, the Verify rule has to
be applied to all nodes that are verified.

(b) The syntactic integration of merging the
nodes at the substitution or adjunction
site is performed. The rules in 3 also
make sure that the semantic expressions



D : {Ψ} T
PltagStep

pltagOp(D,T ) : {Ψ&visit(T )}

D : {Ψ}
Resolve

D : resolveEqns(Ψ)

Figure 2: Overall rules for trees (T ) and derivations (D) and overall semantic expressions (Ψ). PltagStep
applies when a new tree is chosen to be integrated with the prefix tree.

N1 ⇓: {Σ1, Q1,Σ2} N2 ⇑: {Σ3, ? = Q2,Σ4} D : {Ψ}
QuantEquate

D[N1 7→ nodeMerge(N1 : {Σ1, Q1,Σ2}, N2 : {Σ3,Σ4})] : {Ψ&Q1 = Q2}

N1 ⇓: {Σ1, x1, Σ2} N2 ⇑: {Σ3, ? = x2,Σ4} D : {Ψ}
VarEquate

D[N1 7→ nodeMerge(N1 : {Σ1, x1,Σ2}, N2 : {Σ3,Σ4})] : {Ψ&x1 = x2}

N1
p
p : {Σ1, 1,Σ2} N2 : {Σ3} anchor(N2):{Σ4, Pred(x), Σ5} D : {Ψ}

Verify
D[N1 7→ nodeMerge(N1 : {Σ1, 1,Σ2}, N2 : {Σ3})] : {Ψ& 1 = Pred}

Figure 3: Rules for combining nodes. The nodes are attached during the derivation via the nodeMerge
operation, with N1 being the node above (⇓), and N2 being the node below (⇑). These hold for substi-
tution and adjunction (for both canonical and prediction trees). The underlying intuition is that the (⇓)
node will contain the variable equation, and the (⇑) node will contain the mention of a variable to be
equated. The Verify rule equates the variable with the predicate of the verification tree. The equation
is appended to the output expression Ψ. Q2 can also be ∃ or another quantifier. VarEquate also applies to
event variables. The Σn notation represents the prefixes and suffixes of the semantic expressions relative
to the mentioned variable or statement. The rules delete the variable assignment statement from the node
by concatenating Σ3 and Σ4.

from both nodes involved in the integra-
tion are included in the semantic expres-
sion of the merged node.

4. Optionally, a Resolve step is applied, which
eliminates variable assignment statements by
replacing variable mentions with their most
concrete realization.

Regarding variable assignments at the integra-
tion of two trees, the value for quantifier vari-
ables can be a constant in the form of a quanti-
fier. Entity variables can be equated with other
entity variables, and entity constants (e.g., proper
names) are a relatively simple extension to the
rules4. Verification variables can only be equated
with a constant—a predicate name.

We present an example of the processing of
a substitution step in figure 4. The S tree for
sleeps with an open NP substitution node is in
the process of having the NP “someone” substi-
tuted into it using the substUp operation. So we
have already done step 1 of our parsing procedure.
Step 2 is visit, such that the semantic expression
of the NP is appended to the output expression

4A noun phrase like “Peter” will have the associated se-
mantic expression peter&? = peter and will require an ad-
ditional inference rule to remove the quantifier when it is
adjoined or substituted to a node carrying a role. In other
words, substituting peter into QxARG1(e, x) should result
in ARG1(e, peter). An analogous rule for constant verifi-
cation that allows Qx (x) to be verified as peter is also
required.

Ψ. For step 3, the variable assignment statements
are then processed by application of QuantEquate
and VarEquate. Finally in step 4, the expression is
simplified with Resolve.

The Resolve operation. From an implementa-
tion perspective, resolving variable assignment
statements does not really need a separate oper-
ation, as references can be maintained such that
the assignment is automatically performed with-
out any explicit substitution in the manner of a
Prolog inference engine’s resolution procedure.
The same holds for the variable assignment state-
ments. However, we include explicit mention of
this mechanism for ease of expression of the se-
mantic operations as well as to illustrate some de-
gree of convergence with existing formalisms such
as (R)MRS, which also has a mechanism to assert
relationships between variables post hoc.

There is only one condition under which ap-
plication of Resolve can fail, which is if there is
more than one assignment statement connecting
the same variable to different constants.

The Resolve rule is defined to be able to apply
to the entire output expression. When should it
apply? It is defined such that it can be applied at
any time; its actual execution will be controlled
by the parsing algorithm, e.g., after each parsing
operation or at the end of the parse.

There are remaining matters of quantifier scope



NP
{∃x1Person(x1)

&? = x1&? = ∃}

PRO
someone

substUp−−−−−→ S
{Ee}

NP↓
{Q0x0ARG0(e, x0)}

VP

sleeps

(Syntactic view)

Ψ = ∃eQ0x0ARG0(e, x0)
(Before substitution starts)

Ψ = ∃eQ0x0ARG0(e, x0)

&∃x1Person(x1)&? = x1&? = ∃
(Result of visit)

Ψ = ∃eQ0x0ARG0(e, x0)

&∃x1Person(x1)&? = x1&? = ∃
&Q0 = ∃&x0 = x1

(Result of QuantEquate and VarEquate)
Ψ = ∃e∃x0ARG0(e, x0)&Person(x0)

(Result of Resolve)

Figure 4: An example incremental step from the
semantic perspective.

and semantic well-formedness that must be han-
dled post hoc at every step. For example, univer-
sal quantifiers require a distinction to be made be-
tween the restrictor of the quantified variable and
the nuclear scope. It is possible within a neo-
Davidsonian representation to perform such rep-
resentational adjustments easily, as shown by Say-
eed and Demberg (2012).

Example Now that we have described the pro-
cedure, we provide an example of how this se-
mantic augmentation of PLTAG can represent role
labeling and prediction inside the syntactic pars-
ing system. We perform a relevant segment of the
parse of example (1-a), “The woman slid the but-
ter to the man.” In this sentence, we expect that the
parser will already know the expected role of the
NP “the man” before it actually receives it. That is,
it will know in advance that there is an upcoming
NP to be predicted such that it is compatible with a
recipient (ARG2) role, and this knowledge will be
represented in the incremental output expression.

The minimum lexicon required for our example
is contained in figures 5a and 5b. For our illustra-
tion, we only include the ditransitive alternation of
“slide”. Both versions of slide contain all the roles
on NP nodes. This parse involves only the predic-
tion of noun phrases, so we only have an NP pre-
diction tree. We presume for the sake of simplicity
that the determiner “the” represents the existential
quantifier ∃.

Our parse begins in figure 5c with “The woman
slid”, since these are the same in both cases, and
it proceeds up to figure 5e with the sentence “The
woman slid the butter to the man”. We Resolve
the assignments at every step for brevity in the ex-
amples, and we also apply it to the nodes. By fig-
ure 5d, the parser already knows that the ARG2 of
“slide” is what is sought. Finally, by figure 5e, the
appropriate NP is expected by prediction.

7 Discussion and conclusions

We demonstrated how syntactic prediction and
thematic roles can interact in our framework, but
we did so with a simple example of prediction:
a single noun phrase. Our framework is, how-
ever, able to accomodate more complex interac-
tions. In particular, we want to draw attention
to an example which can not be modelled by
other formalisms which are not fully connected
like PLTAG. Consider sentences beginning with
“The victim/criminal was violently. . . ”. Does the
semantic association between “victim” vs. “crimi-
nal” and “violently” change the likelihoods of the
semantic roles that can be assigned to the subject
NP? Does it make an active or a passive voice
verb more likely after “violently”? These are the
kinds of possible syntactic-semantic interactions
for which one will need a flexible but robust for-
malism such as we have described in this paper:
the prediction mechanism allows dependents to
jointly affect the expectation of a head even before
the head has been encountered. Note that these
interactions can also go beyond thematic roles.

In this paper, we have presented a procedure
to augment a treebank-extracted PLTAG lexicon
with semantic annotations based in a flexible neo-
Davidsonian theory of events. Then we have
provided the way to combine these representa-
tions during incremental parsing in a manner fully
synchronized with the existing PLTAG syntactic
operations. We demonstrated that we can rep-
resent thematic role prediction in a case that is
known to be relevant to an on-going stream of psy-
cholinguistic research. Ongoing and future work
includes the development of a joint syntactic-
semantic statistical model for PLTAG and experi-
mental validation of predictions made by our se-
mantic augmentation. We are also considering
higher-order semantic issues such as quantifier
scope underspecification in the context of our for-
malism (Koller et al., 2003).
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(a) Lexicon: ditransitive alternation of slid.
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DT↓
{? = Q}
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|Man(x)
|Butter(x)}
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k
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(b) Lexicalized trees and prediction trees.

S
{∃e? = e}

NP↓
{∃x0ARG0(e, x0)}

DT
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N
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{Woman(x0)}

VP
{e}

V

slid
{Slid(e)}

NP1
{Q2x2ARG2(e, x2)}

DT1 ↓
{? = Q2}

N1
1

{ (x2)}

NP↓
{Q1x1ARG1(e, x1)}

S
{∃e? = e}

NP↓
{∃x0ARG0(e, x0)}

DT
{∃}

the

N
woman

{Woman(x0)}

VP
{e}

V

slid
{Slid(e)}

NP1
{Q1x1ARG1(e, x1)}

DT1 ↓
{? = Q1}

N1
1

{ (x1)}

PP

TOk

tokk

NP↓
{Q2x2ARG2(e, x2)}

∃e? = e&∃x0ARG0(e, x0)&Woman(x0)&Slid(e) ∃e? = e&∃x0ARG0(e, x0)&Woman(x0)&Slid(e)
&Q2x2ARG2(e, x2)&? = Q2& (x2)&Q1x1ARG1(e, x1) &Q1x1ARG1(e, x1)&? = Q1& (x1)&Q2x2ARG2(e, x2)

(c) Parse of “The woman slid” with respect to the ditransitive alternation, with the syntactic prediction of an NP. Two possibilities
still remain. The semantics are identical except for the role of the predicted nominal predicate. The ? = e variable assignment
statement persists through the derivation, representing the possibility that this sentence is embedded in another.

S
{∃e? = e}

NP↓
{∃x0ARG0(e, x0)}

DT
{∃}

the

N
woman

{Woman(x0)}

VP
{e}

V

slid
{Slid(e)}

NP
{∃x1ARG1(e, x1)}

DT
{∃}

the

N
butter

{Butter(x1)}

PP

TOk

tokk

NP↓
{Q2x2ARG2(e, x2)}

∃e? = e&∃x0ARG0(e, x0)&Woman(x0)&Slid(e)
&∃x1ARG1(e, x1)&Butter(x1)&Qx2ARG2(e, x2)

(d) Parse of “The woman slid the butter. . . ”. The arrival of
“the butter” greatly reduces the likelihood of the recipient
role (ARG2) being the one filled at this point, effectively
abolishing the first parse.

S
{∃e? = e}

NP↓
{∃x0 . . .}

DT
{∃}

the

N
woman

{Woman(x0)}

VP
{e}

V

slid
{Slid(e)}

NP
{∃x1 . . .}

DT
{∃}

the

N
butter

{Butter(x1)}

PP

TO

to

NP2
{Q2x2 . . .}

DT2 ↓
{? = Q2}

N2
2

{ (x2)}

∃e? = e&∃x0ARG0(e, x0)&Woman(x0)&Slid(e)
&∃x1ARG1(e, x1)&Butter(x1)&Qx2ARG2(e, x2)
&? = Q2& (x2)

(e) Parse of “The woman slid the butter to. . . ”. to is verified
and the last NP is expanded via prediction. This gives us
the last predicted predicate in the semantic expression. It
shares its variable with the ARG2 role, thus thematically
restricting its possible verifications.

Figure 5: Excerpt of our example parse.
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