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ABSTRACT
Due to increased competition in the IT Services business, im-
proving quality, reducing costs and shortening schedules has
become extremely important. A key strategy being adopted
for achieving these goals is the use of an asset-based ap-
proach to service delivery, where standard reusable compo-
nents developed by domain experts are minimally modified
for each customer instead of creating custom solutions. One
example of this approach is the use of contract templates,
one for each type of service offered. A compliance check-
ing system that measures how well actual contracts adhere
to standard templates is critical for ensuring the success of
such an approach. This paper describes the use of document
similarity measures - Cosine similarity and Latent Seman-
tic Indexing - to identify the top candidate templates on
which a more detailed (and expensive) compliance analy-
sis can be performed. Comparison of results of using the
different methods are presented.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: Information
Search and Retrieval
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similarity, Latent semantic indexing, Text mining

1. INTRODUCTION
In recent years, the IT Services business has shifted from

being a captive market controlled by a few large organiza-
tions to a highly competitive one where many players of
various sizes compete. As a direct consequence of this shift,
improved quality, lower costs and shorter delivery time have
become essential for maintaining and/or increasing market
share. Today, IT companies are seeking to reduce the cost
and time of service delivery by moving from a labor-based to
an asset-based approach. The centerpiece of an asset-based
approach is the development of standard reusable compo-
nents created by domain experts which can be easily tai-
lored to a customer’s requirements, as opposed to develop-
ing custom solutions that are created “from scratch” for each
customer by practitioners with varying degrees of expertise.

One example of standardized assets that is being increas-
ingly adopted in the IT services industry is in the area of
contract authoring. In that space, two key elements are nec-
essary to adopt an asset-based approach. The first is the cre-
ation of standard service contracts, optimized for each type
of service (e.g., setting up a Voice-over-IP service for a cus-
tomer, or setting up a server cluster with site failure-recovery
capabilities), which practitioners can reuse with minor mod-
ifications across clients. The second is a governance process
that ensures the use of such standard contracts in the field.

Contract standardization is achieved with the use of tem-
plates. For a specific service, a contract template typically
standardizes the title, the headings of all sections such as
the Scope of Work, Service Provider Responsibilities, Terms
and Conditions, Asset (Parts) List, and the text of each sec-
tion – with appropriate placeholders for customization. A
template also typically defines a standardized work break-
down structure, describing how the service will (ideally) be
delivered in terms of the sequence of activities and tasks
(some optional) to be performed. Such a work breakdown
structure is typically described in a section of the contract
that covers the service provider’s responsibilities.



Figure 1: Contract template (left) and instance (right)

A critical component of such a standardization effort is
a compliance checking system that measures how well the
actual contracts that are being written in the field adhere to
standard templates. This paper outlines the architecture of
a contract template compliance checking system, and then
focuses on text mining techniques used. These techniques
are used to implement a front-end component that identi-
fies, for each contract, the top candidate templates on which
a more detailed structural and content analysis can be per-
formed to measure compliance accurately.

Contract template compliance can be represented as a
document classification problem. There is a large body of
literature on document classification [1]. For this problem,
each template can be considered to be a class. Some tech-
niques such as Support Vector Machines (SVMs) and Näıve
Bayes are often used for text classification [2, 3], but these
are binary classifiers. As we have multiple templates, we
will need to train multi-class classifiers. It is possible to
turn binary classifiers into multi-class classifiers by training
a set of binary classifiers, one for each class [4]. However,
this is impractical, since the number of templates varies over
time; every time a template is added, ground truth must be
generated, and at least one new classifier must be trained.
Consequently, we chose to treat this as an information re-
trieval (IR) problem, with the contract documents acting as
queries on a database of templates. To apply IR techniques,
we chose to exploit a vector-space model of document simi-
larity.

In this paper, we present work based on existing IR-based
document classification and clustering efforts, particularly
related to Latent Semantic Indexing [5]. We apply this to
document instances that are expected to correspond to tem-
plates, but for which the relationship may be less than di-

rect. The task of contract preparers includes some degree
of customization of both the structure and the content of a
template before it becomes a contract acceptable to a cus-
tomer. Secondly, a subset of the documents have noise in-
troduced by the OCR process (since the contracts are stored
as images) which may need to be smoothed out. The unique
characteristics of this problem suggest starting with an ap-
proach that does not highly weight structural information
and can involve a measure of semantic relatedness. Thus,
we chose to compare the use of a vector-space model with
Latent Semantic Indexing to one without. This approach
was chosen because it is simple to implement, customize
and experiment with.

2. THE SERVICE CONTRACT TEMPLATE
COMPLIANCE SYSTEM

2.1 Templates and Instances
There exists an extensive literature in artificial intelligence

techniques for reasoning about business contracts. Tech-
niques in this area range from defining formal languages and
logical systems in contract representation [6] to integrating
legal knowledge into expert systems that govern contract
formation [7].

In these cases, contracts are represented in a formal, struc-
tured manner. This is not the case for the types of con-
tract templates and instances we discuss here. For our pur-
poses, contract templates are loosely structured documents
in human language developed by engineering, sales, and legal
teams. Templates are generated or removed from the library
that contains them whenever the organization changes the
services offered to customers. This can happen fairly fre-



Figure 2: Architecture of SOW Compliance System

quently depending on the overall dynamics of the business
environment.

Sales teams generate instances of templates as they deal
with customers. Contract templates are often intended to
be fairly flexible in their customization as instances. Not
only do they have spaces for client names, dates, and so on,
they also have short removable segments and spaces to add
more detailed instructions at the client’s request. In fact,
the entire document can be edited at will; while the goal of
the exercise is to maximize compliance with the template,
there is some flexibility required for sales teams to conduct
business. In our case, the instances are generally stored as
fax images of signed documents rather than text. Figure 1
contains an example template and instance pair for aquacul-
ture management services provided by a fictional company;
the instance contains a few examples of the alterations that
can happen when a template is instantiated, edited, and
then potentially stored as a fax image.

The wide variation in contract structure, the potentially
large number of contracts, and the potential for flexibility in
contract instance generation suggest that we use document
similarity and classification approaches; the remainder of
this work describes our own approach.

2.2 System Architecture
Figure 2 describes the architecture of the overall compli-

ance checking system. The input to the system is a repos-
itory of contract images stored in Portable Document For-
mat (PDF), and standard templates which are Microsoft
Word documents. The output is two sets of reports, one
listing contracts that do not match any templates, collated
in groups based on similarity of the members, and the other
showing, on a per template basis, the percentage of matches,
the trend of deviations, and corresponding revenue and profit
information.

Contract images are processed by an Optical Character
Reader (OCR) tool which generates plain text and HTML
output. The Segment Analyzer attempts to recover the doc-
ument structure from the text and HTML inputs. It uses a
combination of statistical techniques (language models) and
heuristic rules to construct the document tree.

Contracts are next processed by the Content Similarity-
Based Filter, which is the subject of this paper. This mod-
ule identifies the top candidate templates which should be
considered for detailed (and more expensive) tree structure-
based matching.

The Document Tree Matcher compares a contract tree
to a template tree using tree matching algorithms, identi-
fies the mismatches (deviations), and computes a combined
structure-content similarity score for the two documents.
The Deviation Analysis step analyzes the differences be-
tween a contract and the best matching template (if one
exists) for each set of contracts associated with a given tem-
plate, to produce insights on the types of customizations
being made to specific templates (for specific service types)
when creating service contracts from them.

The Clustering module attempts to group together sim-
ilar contracts, ideally those dealing with the same service
type, in order to identify new types of services for which
standardized termplates might need to be developed.

2.3 Technical Challenges

2.3.1 The Contract Template Compliance Problem
The eventual determination of whether a service contract

is compliant with a given template has to be made using a
combination of structural and content-based similarity anal-
ysis. A contract can be compliant with a template even if
there is not a perfect alignment of section headings, nor a
high degree of similarity between the contents of contract
and template sections that align with each other based on



heading text. Such differences can be present due to various
reasons:

• An archived contract could have been created from an
older version of the template.

• Sections at a certain level might have been reordered to
change the emphasis on certain aspects of the contract
based on customer priorities expressed in the require-
ments.

• The content of each section can be more than trivially
different from that of the matching section of the tem-
plate. Certain details in the template, such as steps
in a work breakdown structure identified for service
delivery, may not make sense due to some unique con-
siderations in the customer environment and thus have
to be omitted.

In fact, the last point is the very reason why the compliance
system architecture includes a deviation analysis module;
to understand if certain aspects of the template are being
modified frequently enough to warrant another look at its
adequacy to address current market demands.

Computation of a matching score that can take into ac-
count the types of differences outlined above between a con-
tract and a template requires matching a contract with a
template at a structural (document tree) level, followed by
measuring similarity of section contents. Aligning contract
and template document trees, while accounting for section
and section level reordering and section heading differences,
is computationally expensive.

In a large service organization, there can be a dozen or so
major domains in which services are offered, such as servers,
storage, networking, mainframe, data center management,
etc. For each area, dozens of offerings may be available. For
example, in storage services, typical offerings can include
storage environment optimization analysis, storage virtual-
ization setup, disaster recovery readiness analysis and setup,
installation and configuration services for specific types of
storage devices - which tend to be complex to set up opti-
mally, storage area network configuration with fiber channel
equipment, etc. Therefore, it would not be unreasonable to
assume that there can be several hundred templates that
span the range of service offerings.

Performing tree matching of a specific service contract
against several hundred templates to find the best match (or
to determine that there is none) is very inefficient. Thus it is
important to incorporate a front end filter that can identify,
for each contract, the best candidate templates on which
tree matching should be performed. The Content Similarity-
based Filter component performs that function and is the
subject of this paper. The challenges of performing such
filtering using document-level content similarity measures
are outlined in the next section.

2.3.2 Challenges of Similarity-Based Template Fil-
tering

In order to identify the top candidate templates for de-
tailed matching, the Content Similarity-based Filter com-
ponent uses document-level similarity measures, specifically
Cosine Similarity as well as Latent Semantic Indexing. The
key technical difficulty in precisely identifying the top candi-
date templates for each contract is due to the mixed quality
of the contracts.

Since the system is designed to perform compliance analy-
sis on historical data, the quality of archival data is a major
concern. To ensure ease of electronic access many years into
the future, archival stores typically retain documents as im-
ages that are scanned and converted into PDF files. Image
quality is highly dependent on the quality of the scanner and
its settings.

To perform any kind of text mining on images, they have
to be processed by an OCR tool. While currently available
OCR tools are quite advanced in their ability to convert doc-
ument images to text (and HTML or equivalent) files, images
scanned with low contrast or high page misalignment (rota-
tion) typically result in a lot of errors in the resulting text
document. Such errors appear in the form of missing let-
ters in words, missing spaces leading to concatenated words,
missing character sequences spanning multiple words, intro-
duction of spurious characters, and original line boundaries
not being preserved in the text file. Many of these classes of
errors lead to textual differences between a contract and the
template it is supposed to match, which can be challenging
for text-based similarity measures to overcome.

Additionally, deliberately introduced deviations in a con-
tract derived from a template, for reasons outlined in Sec-
tion 2.3.1, can also confuse a document-level similarity mea-
sure. Furthermore, a contract can differ from a template
due to expected customizations that represent a specific cus-
tomer environment. For example, a typical service contract
may have an appendix where the Inventory (Parts) List is
to be inserted. Such a list, for even a given service type,
can vary greatly from one customer to another. One cus-
tomer might order a single piece of equipment whereas for a
larger contract for the same service, dozens of parts might
be ordered.

Finally, it was observed that due to inconsistencies in poli-
cies, certain contract images include the cover letter, the
signature page and other small appendages whereas others
do not - thereby making a document-level similarity match
between a contract and a template inherently inaccurate if
such appendages are considered to be part of the document.

The initial design of the content similarity-based filter ig-
nores all these sources of errors, since attempting to elimi-
nate them would be counter to the goal of building a highly
efficient filter. Experiments were conducted using entire con-
tract documents generated by the OCR tool, and no attempt
was made to preprocess the OCR output to correct spelling
errors or detect spurious sections to eliminate before mea-
suring document level similarity.

Further details of this component are provided in Sec-
tion 3.

3. IMPLEMENTATION
The internal structure of the content-similarity based tem-

plate filtering system is shown in Figure 3. The system is
prototyped in Java, using Apache Lucene to index the con-
tract as well as the template documents after conversion to
text using a commercial OCR tool. Two different techniques
are used to compare contracts to templates to identify top
candidate templates for more detailed analysis. Each tech-
nique depends on a term vector representation of a doc-
ument. In one case, cosine similarity is used, whereas in
the other case Latent Semantic Indexing is used for dimen-
sionality reduction before applying cosine similarity. Details
about these methods, referred to in the rest of the paper as



Figure 3: Document Content Similarity-Based Template Filtering

cosine similarity and LSI, respectively, is provided in the
next section.

3.1 Document similarity
Document similarity is computed using a vector-space model.

In this kind of model, each document is conceptually viewed
as a list of words, and is considered to be a member of a
collection of documents with n types of words (as opposed
to tokens, which are individual instances of words). Next,
word counts are collected, and for each document, a vec-
tor is constructed of the form (w1, w2, ..., wn), where n is
the total number of terms in the entire collection of docu-
ments, and wn is the word token count of the nth word in
the collection-wide list of word types. This defines a space of
dimensionality n and represents each document as a vector
in that space. Note that typically, certain common words
(known as “stop words”) such as “and”, “if”, “but”, etc. are
ignored when selecting which words should form the dimen-
sions of the vector.

The similarity between two documents can be measured
in terms of the length-normalized distance between vectors.
One such measure is known as cosine similarity. Let ~v and
~w be document vectors of dimensionality n. Then the cosine
of the angle between them is:

sim(~v, ~w) =
~v · ~w
‖~v‖‖~w‖

One technique in information retrival systems is to treat
queries as documents. Then they can be converted into vec-
tors of the same dimensionality as the document vectors in
the database. Retrieval can proceed based on comparison
between query vectors and document vectors.

In the above model, there are at least two major sources of
bias in the documents retrieved. One of these is the fact that
longer documents with more occurrences of a given term will
obtain higher similarity scores with a given query contain-
ing that term than shorter documents. Thus, for term i in
document j, normalization is done by converting the count
ni,j into a term frequency (tf).

tf(i, j) =
ni,jX

k

nk,j

Another source of bias is the set of terms that are very
frequent in the collection. Their distribution among many
documents suggests that they are unimportant and risks
masking distinctions made by less frequent, more significant
terms. To compensate for this, the inverse document fre-
quency (idf) of every term is computed. If D is the set of
documents, and ti represents the ith term in the entire set
of terms in the collection, then

idf(i) = log
|D|

|{d : d ∈ D & ti ∈ d}|
This divides the total number of documents in the col-

lection by the number of documents in which ti appears.
Terms which appear in more documents will have an idf
that is closer to 0.

Such tfidf -reweighted vectors can be obtained by replac-
ing all term counts in each document vector by the result of
multiplying tf and idf .

For contract-template compliance analysis, each contract
is treated as a query on a database of templates. Both query
and document are tfidf-reweighted vectors.

3.2 Dimensionality reduction
One problem with computing similarity in an n-dimensional

space, where n is the number of (non-stop-word) terms in
the collection of documents, is that there can be too many
dimensions. This can detract from the task of capturing
important similarities. This is reflected in the problem of
synonymy. Relative to a given application of document sim-
ilarity, it is conceivable that there is no interesting difference
between “seat” and “chair”. However, each of these will rep-
resent a different dimension and will obscure relationships
between queries and documents that involve these terms.
When the domain is more technical, one cannot always rely
on thesauri to solve this problem. Instead, the distribution



of terms have to be inspected to ensure that terms that are
similarly distributed are treated similarly in document re-
trieval.

Likewise, sometimes a particular term/dimension inap-
propriately conflates semantically different concepts via pol-
ysemy. An example of this is, again, “chair”—which refers
both to a seat and to the leader of a committee.

One technique that is currently used to both reduce and
separate dimensions is Latent Semantic Indexing (LSI). LSI
uses a linear algebra technique known as singular-value de-
composition (SVD) to map the dimensions of the original
document vector space into dimensions called “concepts”,
which represent associations of terms. It is a technique that
projects document term vectors into a space with “latent”
semantic dimensions, where co-occuring terms are projected
into the same dimensions and non-co-occurring terms into
different dimensions.

Let M be a matrix whose n rows represent terms and
whose m columns represent documents. In effect, the con-
tents of each column is a document vector. Then the SVD
of M is represented by

M = USV T

where U is a term-by-concept (n by m) matrix, V T is a
concept-by-document (m by n) matrix, and S is a square (m
by m) matrix containing, along the diagonal, the singular
values that represent the relationships between terms and
documents. U and V are both orthonormal. The values in S
descend diagonally by magnitude. Intuitively, SVD converts
the direct relationship between terms and documents into an
indirect one mediated by concept associations and scaled by
singular values, which reflect the relative importance of the
concept associations.

The columns of V T can be used as substitute document
vectors for similarity computation where the dimensions are
concepts. They correspond to the original document vectors
transformed to the new concept space.

Since many of the concept associations are trivial, they
create noise. V is orthonormal, and each concept’s contri-
bution to a document vector is unweighted by importance.
The corresponding S matrix, however, contains ranked coef-
ficients that, intuitively speaking, determine the importance
of the concepts in descending order. Consequently, one can
establish a cutoff in the ranks and reduce the number of
rows in V T accordingly to only consider the significant con-
cepts, before performing similarity computations between
contracts and templates in that matrix. The cutoff point
(the number of top concepts to consider) has to be deter-
mined empirically.

3.3 Use of Lucene
In our system Lucene is used only as a convenient and

efficient means of converting documents into term vectors
and for extracting statistics about the corpus for computing
tfidf . Lucene itself cannot be reliably used to compare con-
tracts with templates using simple cosine similarity since it
does not report similarity scores using a strict cosine mea-
sure from 0 to 1, and there is no guarantee that Lucene’s
scores will hold stable across different sets of documents.

3.4 Term Vector Creation
To create term vector representations of each document,

the contracts and template files are first used to create two

separate Lucene indices. Next, the terms present in the
template index are extracted using Lucene APIs, and these
form the term space for converting template and contract
documents into term vectors.

The use of only template terms for term vector creation is
a simple approach for overcoming a key class of OCR errors
- the presence of non-English (misspelt) words introduced
by the image–to–text conversion process. By limiting the
term vector terms to only those present in templates (which
are cleanly formatted and spell-checked Microsoft Word doc-
uments), misspelt terms in contracts are automatically ig-
nored. Note that this is not the best possible solution; a
better alternative would be to attempt to clean such terms
via spelling correction techniques so that the presence of the
term in the contract is not ignored completely. However, the
above filtering approach does produce better results than
considering terms in templates as well as contracts without
spelling correction.

A number of alternatives were explored for computing the
term weights - beyond using the standard tfidf formula.
The first was IDF smoothing, and the other was term boost-
ing.

3.4.1 IDF Smoothing
In typical search systems, the IDF component of the term

weight ensures that a relatively rare term, which occurs only
in a few documents, results in those documents being ranked
most prominently in the search result when a query con-
tains that term. However, this property of IDF has an ad-
verse effect when the vector-space model is used to compare
two documents. Consider a term such as “health”. It was
observed that the occurrence of that term in the name of
the customer in a given contract (a relatively rare event)
made that document appear to be highly similar to a tem-
plate whose subject was related to “network health check-
ing”, which was a false conclusion. While the bias intro-
duced by high IDF values for rare terms helps in search to
retrieve relevant documents, it seems to have an adverse
effect when comparing two documents. To counteract this
effect, a smoothing technique was used to reduce IDF values
that were too high. The formula used for smoothing is:

idf(i) = log
|D| ∗ (1 + C)

|{d : d ∈ D & ti ∈ d}|+ |D| ∗ C

where D is the set of documents and C is a constant that
was set to 0.1 and 0.2 for different experiments (see [8] for
the intuition behind this formula).

3.4.2 Term Boosting
For term boosting, in each document processed, certain

domain-specific terms were identified as being more impor-
tant than others, and their weights were increased according
to the formula below:

max (tf(i) ∗ 2, maxtf)

Essentially, the weight of a domain-specific term is doubled,
but capped by the value of the highest term weight in the
document before boosting. In the experiments conducted,
the domain-specific terms chosen for boosting were those
that appeared in the document titles and section headings
of all contract templates that were part of the corpus used
for the experiments. Examples terms include General Re-
sponsibilities, Transition, Order Management, and so on.



3.5 Latent Semantic Indexing
For LSI experiments, NIST’s public domain Java linear

algebra package named JAMA was used for dimensionality
reduction. JAMA contains a built-in SVD implementation.
Code for computing cosine similarity of two document vec-
tors, over the LSI-reduced concept space as well as the orig-
inal term space, was implemented as part of the system.

4. EXPERIMENTS AND RESULTS

4.1 Evaluation Criteria
In this section, we compare the performance of the LSI-

based and cosine similarity-based approaches. The data con-
sists of a set of 340 contracts and 50 templates, for the do-
main of communication services. The SVD matrix has about
3240 terms. We manually identified the templates matching
each contract (or the fact that there was no matching tem-
plate) as the ground truth and compared it to the results
from both LSI and cosine similarity.

When identifying the ground truth data set, we observed
that most of the contracts have at most one matching tem-
plate. Additionally, since the next component of the system
performs further analysis on the selected templates to com-
pute the deviation between the contract and each template,
false positives introduced by the content similarity-based fil-
ter will eventually be filtered out. Therefore, only recall is
used to measure performance without penalizing false pos-
itives. Here, recall is defined as the number of returned
matching templates divided by the total number of matching
templates.

4.2 Evaluation of Results
For each contract, we compute its similarity score with

each of the templates using both LSI and cosine similar-
ity techniques, and rank the templates based on the scores.
Then we retrieve the list of Top-K templates and the list
of templates whose similarity scores are higher than a given
threshold. In Table 1, we compare the recall of LSI with
that of cosine similarity for the Top-K template retrieval,
where K was 1, 3 and 5 respectively. The comparison with
regard to the threshold based template retrieval is shown in
Table 2, where we did experiments for thresholds 0.9, 0.75
and 0.6.

In both tables, the columns with heading“None”represent
the measurement of recall without applying any special pro-
cessing technique to the term weights. Both LSI and cosine
similarity do not perform very well in that case, expecially
for the threshold based approach. In order to improve the
matching quality, we used IDF smoothing with a factor of
0.2 and boosted weights of domain specific terms in docu-
ment titles before computing similarity scores. The columns
with heading“IDF”present the results of using IDF smooth-
ing, the columns with heading “Boost” show the results of
boosting term weights and the columns with heading “IDF
& Boost” document results when both IDF smoothing and
term boosting are used.

In both retrieval approaches, IDF smoothing and term
boosting have improved the performance of LSI and cosine
similiary. Especially for LSI, when the two processing tech-
niques are used together, it reaches the highest recall in all of
the cases. On the other hand, in the Top-K approach, when-
ever K is increased, the recall is increased (because more
templates are being retrieved). Similarly, in the threshold

based approach, whenever the threshold is descreased and
more templates are retrieved, the recall is increased.

Compared to LSI, cosine similarity returns relatively low
similarity scores for the templates as shown in Table 2, but it
can quickly identify the matching templates and rank them
high as shown in Table 1. Therefore, LSI appears to be
better when used in a threshold-based filter while cosine
similarity is better for the Top-K approach. However, it
should be noted that when the threshold is set to be low,
the LSI approach may retrieve many templates for a given
contract instance, which can slow down the subsequent Tree
Matching component. We need to balance the tradeoff be-
tween recall performance and the the number of templates
selected for detailed structural analysis.

4.3 Boosting LSI Scores
Another experiment we did was to combine LSI based and

cosine similarity based techniques to further improve recall.
The idea is to boost LSI scores based on cosine similarity
results. If cosine similarity ranks a template the highest in
the results, we boost its corresponding LSI score by using
the following formula:

Boosted LSI Score = 0.5 * (LSI Score + 1)

Otherwise, we do not change LSI scores. Table 3 presents
the comparison of the recall between LSI and LSI com-
bined with cosine similarity by using the methods of IDF
smoothing, term boosting as well as IDF smoothing & term
boosting. The threshold was set to 0.75. The performance
comparison shows that LSI boosted with cosine similarity
consistently outperforms LSI for all of the three methods.

4.4 Observations
For some contracts, LSI ranked non-matching templates

higher than matching templates. One of the reasons could
be that only a few hundred documents were used to per-
form SVD while typically, thousands of documents are used
to enable LSI to accurately detect co-occurring terms. With
a small number of documents, LSI may mistakely group ir-
relevant words together to form concepts.

In addition, sometimes, both LSI and cosine similarity
identified incorrect templates due to the complexity of the
compliance problem. In some cases, a contract and its best
matching template comply perfectly at a structural level
(i.e., they have very similar section headings), but the con-
tract has section content that differs from that of the match-
ing section in the template, possibly due to tailoring of the
template for specific client requirements. In other cases, a
contract does not include all of the sections in the near-
est matching template, or adds a few sections that the best
matching template does not have. Such customization con-
fuses both LSI and cosine similarity since they cannot take
document structure into account. We believe that boosting
weights of domain specific terms in document titles helps
reinforce some degree of structural information. Therefore,
that technique has led to the improvement in performance.

5. RELATED WORK
The problem of matching documents by their textual con-

tent to templates, in order to assess compliance with regimes
specified in those templates, is not one that is well-studied
in the literature. There has been considerable work in the



LSI Cosine Similarity
None IDF Boost IDF & Boost None IDF Boost IDF & Boost

Top-1 recall 0.3 0.5 0.6 0.6 0.6 0.8 0.8 0.7
Top-3 recall 0.7 0.8 0.8 0.8 0.8 1 1 1
Top-5 recall 0.9 0.9 1 1 0.8 1 1 1

Table 1: Recall for LSI versus Cosine Similarity w.r.t. Top-K Template Retrieval

LSI Cosine Similarity
None IDF Boost IDF & Boost None IDF Boost IDF & Boost

Threshold-0.9 recall 0.3 0.4 0.3 0.4 0.1 0.1 0.1 0.1
Threshold-0.75 recall 0.3 0.5 0.5 0.6 0.3 0.4 0.3 0.5
Threshold-0.6 recall 0.6 0.7 0.7 1 0.4 0.5 0.5 0.5

Table 2: Recall for LSI versus Cosine Similarity w.r.t. Threshold based Template Retrieval

space of image pattern recognition as in Peng et al. [9].
They present an algorithm that uses Component Block Pro-
jections (CBP) of document images to find the correct tem-
plate image out of a large set of templates. Other work using
image-based techniques include Hu et al. [10] and Shimotsuji
and Asano [11]; the latter use the locations of cells on form
images to match them to each other. Our work involves tem-
plates that are already in text format, and text documents
whose quality after OCR processing is highly variable.

Perhaps more closely related is the work of Minakov et
al. [12] who developed a multiagent system for text analy-
sis that clustered auto insurance contracts by semantic fea-
tures. Features extracted from the clusters were then used
to assist domain experts in constructing insurance contract
templates. However, in our work, the templates are already
created by domain experts, and we use IR techniques to find
the best matching template given service contracts.

Brauer et al. [13] attempt to match data from unstruc-
tured business documents to structured enterprise data stored
in databases. However, while contract templates have some
structure, they are not structured data in a relational database
for example.

Chen et al. [14] use“template matching”to retrieve patent
documents based on queries, but these “templates” are ac-
tually a means of representing the syntax and semantics of
expressions in patent abstracts. They are not classifying
entire documents by the characteristics of whole template
documents.

6. CONCLUSIONS AND FUTURE WORK
In any effort to convert IT service offerings into commodi-

ties, standardization is a key ingredient. The main contribu-
tion of this paper has been to demonstrate the use of a novel
paradigm in a system developed for checking the degree of
contract standardization: namely, the use of information re-
trieval techniques to efficiently identify the degree of com-
pliance of service contracts with a set of templates. In the
pursuit of this goal, we tested two information retrieval tech-
niques, using a paradigm of query-as-classification. The clas-
sification task was to efficiently determine, given a contract
document, on which template it had been based. However,
given the nature of service contract customizations and what
constitutes compliance (a strong focus on structural match),
it is often the case that a purely document level similarity
analysis is insufficient for identifying the compliance to a
given template. Thus, this work presents the preliminary
step in classifying contract documents by template: candi-
date discovery.

We selected and tested some variants of cosine similar-
ity and LSI as our information retrieval technique. There
were two ways of doing this: selecting candidates by simi-
larity rank, and selecting candidates by thresholding simi-
larity scores. We considered success to be when the correct
template appears in the rank- or threshold-filtered search
results.

The comparison is complex: there are some contexts in
which LSI works better than cosine similarity, and there
are some in which cosine similarity works better than LSI.
If we filter search results by rank (the Top-K approach),
then on the whole, cosine similarity is more successful; how-
ever, the effect disappears when we increase the number of
ranked documents permitted to appear in the search results,
in which case the LSI-based and cosine similarity-based ap-
proaches achieve parity. The reverse is true if we use a
threshold-based filter; in fact, only LSI gets 100% recall in
this category.

If we consider the goal of the filtering step to be the de-
livery of a restricted set of candidates to later phases of
the compliance-analysis processing pipeline, then we should
prefer the use of Top-K—and therefore the cosine similar-
ity approach. This is what concern over efficiency would
dictate.

However, if future efficiency were not a consideration, and
we were to consider the value of finding more candidate tem-
plates while being able to rule out any template for a com-
pletely mismatching contract, then the threshold approach
would have an advantage. With a variable number of plau-
sible candidate templates and a sufficiently low threshold,
the risk of a false negative is reduced. In spite of such a
threshold, if zero contracts make the cut, then no detailed
analysis will be necessary whereas in the top-K approach,
there are always K templates to consider in the next phase.
Then we see that LSI would have an advantage over cosine
similarity.

Some of the improvements for both LSI and cosine simi-
larity are related to the introduction of IDF smoothing and
term boosting, which suggests that these effects are actually
due to better weighting of the terms.

One key problem with whole document comparison is that
even for contracts that are associated with a single type of
service, there can be natural differences between them. An
inventory (parts) list for a service contract would vary from
one customer to another, and nonstandard parts of a con-
tract such as the cover letter and signature pages, if present
in one contract and not another, will confuse any whole doc-
ument similarity measure. In the future, we plan to use basic
document structure identification techniques to determine



LSI LSI + Cosine Similarity Rank
IDF Smoothing 0.5 0.7
Term Boosting 0.5 0.8

IDF Smoothing & 0.6 0.8
Term Boosting

Table 3: Recall for LSI versus LSI + Cosine Similarity Rank w.r.t. Threshold-0.75 Recall

if such sections exist, and prune their content before com-
puting a term vector representation of the document. Such
techniques (e.g., used in the Segment Analyzer component in
Figure 2) are also required for the detailed similarity compu-
tation of a contract with the candidate templates. However,
an efficient version of the segment analyzer, that only focuses
on identifying sections prone to introducing noise in whole
document similarity computations, has to be developed.
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[13] Brauer, F., Löser, A., Do, H.H.: Mapping enterprise
entities to text segments. In: PIKM ’08: Proceeding of
the 2nd PhD workshop on Information and knowledge
management, New York, NY, USA, ACM (2008) 85–88

[14] Chen, L., Tokuda, N., Adachi, H.: A patent document
retrieval system addressing both semantic and
syntactic properties. In: Proceedings of the ACL-2003
workshop on Patent corpus processing, Morristown,
NJ, USA, Association for Computational Linguistics
(2003) 1–6


